scholarly journals Three-Dimensional Electro-Thermal Analysis of a New Type Current Transformer Design for Power Distribution Networks

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1792
Author(s):  
Bingbing Dong ◽  
Yu Gu ◽  
Changsheng Gao ◽  
Zhu Zhang ◽  
Tao Wen ◽  
...  

In recent years, the new type design of current transformer with bushing structure has been widely used in the distribution network system due to its advantages of miniaturization, high mechanical strength, maintenance-free, safety and environmental protection. The internal temperature field distribution is an important characteristic parameter to characterize the thermal insulation and aging performance of the transformer, and the internal temperature field distribution is mainly derived from the joule heat generated by the primary side guide rod after flowing through the current. Since the electric environment is a transient field and the thermal environment changes slowly with time as a steady field under the actual conditions, it is more complex and necessary to study the electrothermal coupling field of current transformer (CT). In this paper, a 3D simulation model of a new type design of current transformer for distribution network based on electric-thermal coupling is established by using finite element method (FEM) software. Considering that the actual thermal conduction process of CT is mainly by conduction, convection and radiation, three different kinds of boundary conditions such as solid heat transfer boundary condition, heat convection boundary condition and surface radiation boundary condition are applied to the CT. Through the model created above, the temperature rise process and the distribution characteristics of temperature gradient of the inner conductor under different current, different ambient temperatures and different core diameters conditions are studied. Meanwhile, the hottest temperature and the maximum temperature gradient difference are calculated. According to this, the position of weak insulation of the transformer is determined. The research results can provide a reference for the factory production of new type design of current transformer.

2014 ◽  
Vol 1079-1080 ◽  
pp. 510-514
Author(s):  
Yong Qiang Wang ◽  
Jie He ◽  
Lun Ma ◽  
Liu Wang ◽  
Ying Ying Sun ◽  
...  

Thehottest spot temperature (HST) of windings of oil-immersed transformer is animportant factor that affects load capacity and operation life of transformer,and is closely related to the transformer load, top oil and environmenttemperature. HST, when operating at high temperature and overload, may lead totransformer failure which will affect the normal operation of the power system.In order to calculate the transformer hot spot temperature accurately, we takea 33MVA-500KV transformer as an example, and establish a three dimensionalmodel, get its internal temperature distribution based on Fluent simulationsoftware. At last, we comparative and analysis the accuracy of FVM calculation andIEEE guidelines recommend model combined with online monitored values. Theresults show that the FVM method with higher accuracy relative to the IEEEguidelines model, proved that using the FVM can accurately calculate the HST ofoil-immersed transformer.


AIP Advances ◽  
2016 ◽  
Vol 6 (7) ◽  
pp. 075007 ◽  
Author(s):  
Ruixi Jia ◽  
Qingyu Xiong ◽  
Kai Wang ◽  
Lijie Wang ◽  
Guangyu Xu ◽  
...  

2021 ◽  
Vol 315 ◽  
pp. 3-9
Author(s):  
Yuan Gao ◽  
Li Hua Zhan ◽  
Hai Long Liao ◽  
Xue Ying Chen ◽  
Ming Hui Huang

The uniformity of temperature field distribution in creep aging process is very important to the forming accuracy of components. In this paper, the temperature field distribution of 2219 aluminum alloy tank cover during aging forming is simulated by using the finite element software FLUENT, and a two-stage heating process is proposed to reduce the temperature field distribution heterogeneity. The results show that the temperature difference of the tank cover is large in the single-stage heating process, and the maximum temperature difference is above 27°C,which seriously affects the forming accuracy of the tank cover. With two-stage heating process, the temperature difference in the first stage has almost no direct impact on the forming accuracy of the top cover. In the second stage, the temperature difference of the tank cover is controlled within 10°C, compared with the single-stage heating, the maximum temperature difference is reduced by more than 17°C. The two-stage heating effectively reduces the heterogeneity of the temperature field of the top cover. The research provides technical support for the precise thermal mechanical coupling of large-scale creep aging forming components.


Author(s):  
Sergei Kurashkin ◽  
Vadim Tynchenko ◽  
Aleksandr Murygin ◽  
Yuriy Seregin ◽  
Valeriya Tynchenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document