Real-Time Adaptive Cutting Tool Flank Wear Prediction

2014 ◽  
Vol 2 (3) ◽  
pp. 184-189
Author(s):  
Gun Lee ◽  
John K. Schueller
2011 ◽  
Vol 188 ◽  
pp. 38-42
Author(s):  
Dong Dong Wan ◽  
Xu Hong Guo ◽  
Chi Hong Wang

Three different cutting tools (ceramics CC6050, cubic boron nitride CB7025, carbide GC2025) were used for dry cutting of 3 groups of ADI which were heat-treated separately under different quenching temperatures. With the unified cutting parameters, the wear of tool flank of each cutter was studied and the main influencing factors of the wear were analyzed. Results showed that when the cutting parameters ap =0.2mm, f =0.16mm/r, vc =108m/min and the cutting tool was determined, the higher the quenching temperature was the lower the hardness of the test bars were and the tool flank wear was less; When the quenching temperature was determined, the more the produced BUE (build up edge) of the cutting tool was the less the tool flank wear was.


2012 ◽  
Vol 6 (6) ◽  
pp. 958-970 ◽  
Author(s):  
Mitsuaki MURATA ◽  
Syuhei KUROKAWA ◽  
Osamu OHNISHI ◽  
Michio UNEDA ◽  
Toshiro DOI

Wear ◽  
2007 ◽  
Vol 263 (7-12) ◽  
pp. 1454-1458 ◽  
Author(s):  
Jianwen Hu ◽  
Y. Kevin Chou

2017 ◽  
Vol 16 (03) ◽  
pp. 237-261 ◽  
Author(s):  
T. Sampath Kumar ◽  
S. Balasivanandha Prabu ◽  
T. Sorna Kumar

In the present work, the performances of TiAlN-, AlCrN- and AlCrN/TiAlN-coated and uncoated tungsten carbide cutting tool inserts are evaluated from the turning studies conducted on EN24 alloy steel workpiece. The output parameters such as cutting forces, surface roughness and tool wear for TiAlN-, AlCrN- and AlCrN/TiAlN-coated carbide cutting tools are compared with uncoated carbide cutting tools (K10). The design of experiment based on Taguchi’s approach is used to obtain the best turning parameters, namely cutting speed ([Formula: see text]), feed rate ([Formula: see text]) and depth of cut ([Formula: see text]), in order to have a better surface finish and minimum tool flank wear. An orthogonal array (L[Formula: see text] was used to conduct the experiments. The results show that the AlCrN/TiAlN-coated cutting tool provided a much better surface finish and minimum tool flank wear. The minimum tool flank wear and minimum surface roughness were obtained using AlCrN/TiAlN-coated tools, when [Formula: see text][Formula: see text]m/min, [Formula: see text][Formula: see text]mm/rev and [Formula: see text][Formula: see text]mm.


2007 ◽  
Vol 329 ◽  
pp. 705-710 ◽  
Author(s):  
X.L. Zhao ◽  
Yong Tang ◽  
Wen Jun Deng ◽  
F.Y. Zhang

A coupled thermoelastic-plastic plane-strain finite element model is developed to study orthogonal cutting process with and without flank wear. The cutting process is simulated from the initial to the steady-state of cutting force and cutting temperature, by incrementally advancing the cutting tool forward. Automatic continuous remeshing is employed to achieve chip separation at the tool tip regime. The effect of the degree of the flank wear on the cutting forces and temperature fields is analyzed. With the flank wear increasing, the maximum cutting temperature values on the workpiece and cutting tool increase rapidly and the distribution of temperature changes greatly. The increase of tool flank wear produced slight increase in cutting forces but significant increase in thrust forces.


Author(s):  
Mohsen Khajehzadeh ◽  
Omid Boostanipour ◽  
Soheil Amiri ◽  
Mohammad Reza Razfar

In this article, the effect of vibration amplitude during ultrasonic elliptical vibration–assisted turning on cutting tool flank wear ( VBmax) and tool diffusion wear mechanism has been experimentally studied in machining of AISI 4140 hardened steel. To achieve this goal, an ultrasonic elliptical vibration–assisted turning setup was designed and manufactured. This device was then used in both ultrasonic-assisted tuning and ultrasonic elliptical vibration–assisted turning tests (i.e. one-dimensional and two-dimensional ultrasonic-assisted machining). According to the achieved results, ultrasonic elliptical vibration–assisted turning is more effective than ultrasonic-assisted tuning in reducing tool flank wear; at an amplitude of 13 μm, work velocity of 180 mm/s and feed of 0.09 mm/rev, VBmax were decreased 30.3% and 54.3%, respectively, in case of ultrasonic-assisted tuning and ultrasonic elliptical vibration–assisted turning. It was also observed that increasing the amplitude of ultrasonic vibrations reduces VBmax; at work velocity of 180 mm/s and feed of 0.09 mm/rev, the reduction of VBmax in ultrasonic elliptical vibration–assisted turning with amplitudes of 5 and 13 μm is, respectively, 39.3% and 54.3%, compared with that of conventional machining. The results also show that the application of ultrasonic vibrations weakens the cutting tool diffusion wear mechanism. This attenuation is much higher for ultrasonic elliptical vibration–assisted turning in comparison to ultrasonic-assisted tuning. Besides, the amount of attenuation in cutting tool diffusion wear mechanism decreases with increasing vibration amplitude.


Sign in / Sign up

Export Citation Format

Share Document