diffusion wear
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2796
Author(s):  
Roland Bejjani ◽  
Charlie Salame ◽  
Mikael Olsson

Due to increasing demand in manufacturing industries, process optimization has become a major area of focus for researchers. This research optimizes the cryogenic machining of aerospace titanium alloy Ti-6Al-4V for industrial applications by studying the effect of varying the nozzle position using two parameters: the nozzle’s separation distance from the tool–chip interface and its inclination angle with respect to the tool rake face. A finite element model (FEM) and computational fluid dynamics (CFD) model are used to simulate the cryogenic impingement of cryogenic carbon dioxide on the tool–workpiece geometry. Experiments are conducted to evaluate cutting forces, tool wear, and surface roughness of the workpiece, and the results are related to the CFD and FEM analyses. The nozzle location is shown to have a significant impact on the cutting temperatures and forces, reducing them by up to 45% and 46%, respectively, while the dominant parameter affecting the results is shown to be the separation distance. Cryogenic machining is shown to decrease adhesion-diffusion wear as well as macroscopic brittle chipping of the cutting insert compared to dry turning, while the workpiece surface roughness is found to decrease by 44% in the case of cryogenic machining.


2021 ◽  
Author(s):  
Yu Chen ◽  
Jinxing Kong ◽  
Zhenyu Zhang ◽  
Dongxing Du

Abstract A thin-walled spherical shell made of pure iron material is a key part of precision physical experiments. Tool wear is an important factor restricting its geometric accuracy. And tool wear characteristics of curved surface parts are significantly different from those of single-point turning due to the movement of the contact point between the tool and the workpiece. Hence, this article takes the pure iron spherical shell as the research object, which is aimed at investigating the formation mechanisms of flank wear land. Tool wear characteristics are compared between spherical shell turning and end face turning. The results show that uniform flank wear land and notable notch wear occur when turning end face, but notch wear disappears and only flank wear land exists when turning spherical shell. Based on major notch position and minor notch position, a mathematical model is developed to explain formation mechanisms of flank wear land during turning spherical shell of pure iron materials. Theoretical and experimental results show that flank wear land results from the major and minor notch movement. Spherical shell turning and end face turning have the same wear mechanisms, mainly composed of adhesive wear, diffusion wear and oxidation wear.


Author(s):  
Mohsen Khajehzadeh ◽  
Omid Boostanipour ◽  
Soheil Amiri ◽  
Mohammad Reza Razfar

In this article, the effect of vibration amplitude during ultrasonic elliptical vibration–assisted turning on cutting tool flank wear ( VBmax) and tool diffusion wear mechanism has been experimentally studied in machining of AISI 4140 hardened steel. To achieve this goal, an ultrasonic elliptical vibration–assisted turning setup was designed and manufactured. This device was then used in both ultrasonic-assisted tuning and ultrasonic elliptical vibration–assisted turning tests (i.e. one-dimensional and two-dimensional ultrasonic-assisted machining). According to the achieved results, ultrasonic elliptical vibration–assisted turning is more effective than ultrasonic-assisted tuning in reducing tool flank wear; at an amplitude of 13 μm, work velocity of 180 mm/s and feed of 0.09 mm/rev, VBmax were decreased 30.3% and 54.3%, respectively, in case of ultrasonic-assisted tuning and ultrasonic elliptical vibration–assisted turning. It was also observed that increasing the amplitude of ultrasonic vibrations reduces VBmax; at work velocity of 180 mm/s and feed of 0.09 mm/rev, the reduction of VBmax in ultrasonic elliptical vibration–assisted turning with amplitudes of 5 and 13 μm is, respectively, 39.3% and 54.3%, compared with that of conventional machining. The results also show that the application of ultrasonic vibrations weakens the cutting tool diffusion wear mechanism. This attenuation is much higher for ultrasonic elliptical vibration–assisted turning in comparison to ultrasonic-assisted tuning. Besides, the amount of attenuation in cutting tool diffusion wear mechanism decreases with increasing vibration amplitude.


2020 ◽  
Author(s):  
Yikun Yuan ◽  
Wenbin Ji ◽  
Shijie Dai ◽  
Huibo Zhang

Abstract To ensure accuracy and improve the processing efficiency of Ti–6Al–4V alloys, dry turning experiment of Ti–6Al–4V was carried out using a novel TiB2-based cermet tool. The tool was reinforced by nanoscale VC additive and exhibited excellent hardness and fracture toughness.Response Surface Methodology (RSM) was used in the experiment to verify andevaluatethe cutting performance ofTiB2-based cermet tool.The cutting forces and machined surface roughness (Ra) were selected as the optimization objective. An analysis of variance (ANOVA) was used to find out the effective machining parameters on response factorsand demonstrate correctness of the models. It was found that theeffective factor on surface roughness was feed rate, while cutting depth significantly affected cutting forces.And the confirmation experiments showedthat the predicted values were in good agreement with experimental values. Based on the optimized cutting parameters, the tool life was measured and tool wear mechanismwasinvestigated. When the vc, apandfwere 100 mm/min, 0.16 mm, 0.1 mm/rev respectively for Ra optimization, the cutting length and tool lifecould reach to 3233 m and 29.4 min, respectively, due to the excellentwear resistance and stability of TiB2-based cermet tool at high cutting temperature. In this case, the main wear mechanism was adhesive wear and diffusion wear.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 303
Author(s):  
Pal Terek ◽  
Lazar Kovačević ◽  
Aleksandar Miletić ◽  
Branko Škorić ◽  
Janez Kovač ◽  
...  

Coatings deposited by physical vapor deposition (PVD) significantly reduce the wear of high pressure die casting tools; however, cast alloy soldering still has a strong negative effect on production efficiency. Although a lot of research has been already done in this field, the fundamental understanding of aluminum alloy soldering toward PVD coatings is still scarce. Therefore, in this work the performance of CrN duplex coatings with different roughness is evaluated by a modified ejection test performed with delayed (DS) and conventional casting solidification (CS). After the ejection tests, sample surfaces and layers were subjected to comprehensive characterizations of their morphological and chemical characteristics. Considerably lower values of the ejection force were recorded in DS experiments than in CS experiments. Surface roughness played an important role in the CS experiments, while samples with different surface topographies in the DS experiments performed in a similar fashion. The decrease in the ejection force, observed in DS tests, is attributed to the formation of a thick Cr–O layer on CrN coating which reduced soldering and sliding friction against thick Al–O casting scale. The Cr–O layer formed in DS experiments suffered from diffusion wear by cast alloy. The observed oxidation phenomena of nitride coatings may be utilized in a design of non-sticking coatings.


Author(s):  
Mohamed Bouleghlem ◽  
Moussa Zahzouh ◽  
Mohamed Hamidouche ◽  
Abdelyamine Boukhobza ◽  
Mamoun Fellah

WC-Co cemented carbide is one of the widely hard materials used for cutting in machining industry, due to its microstructural and mechanical stability even at high temperature. However, diffusion wear is the most serious problem that WC-Co suffers from. One of the most applied approaches to improve the WC–Co cemented carbide performances is the addition of transition metal carbides such as: TiC, TaC and NbC which prevents diffusion wear thanks to the gamma phase (Ti,Ta,Nb,W)C which is formed during sintering. Therefore, and in order to understand the thermal metallurgical reactions occurred between WC-Co cemented carbide and (Ti, Ta, Nb)C transition carbides and theirs effects on the microstructural and mechanical properties. The WC–TiC– TaC– NbC–Co cemented carbide was elaborated by conventional powder metallurgy then thermal, microstructural and mechanical investigations were performed on the elaborated carbide. A temperature of sintering was determined to be more than 1347 oC by differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Scanning electronic microscopy (SEM) coupled with energy dispersive spectrometer (EDS) observations showed that the microstructure consists in a mixture of angular WC grains and (W,Ti)C rounded grains embedded in the Co-rich binder. X-ray diffraction analysis confirmed the presence of these three phases with free carbon. The results of EDS analysis highlight the solution-reprecipitation phenomena caused by liquid phase sintering and clearly revealed the presence of small amount of free carbon. The mechanical characterizations showed that the WC–TiC– TaC– NbC–Co cemented carbide exhibits excellent hardness-fracture toughness combination.


Present work is an attempt to develop a simulink model of tool wear by machining of Bearing Steel (62 HRC) using cubic boron nitride (CBN) tool. The available mathematical model in the scholarly literature is used to make the simulation model using MATLAB software. Three components of tool wear adhesive wear, abrasive wear & diffusion wear are considered separately for their modeling and later modeling of total wear is done. Variation of tool wear is studied with respect to cutting speed. The developed simulink model is capable to do the similar type of study by changing the workpiece and tool material combination.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2822 ◽  
Author(s):  
Sara Saketi ◽  
Stina Odelros ◽  
Jonas Östby ◽  
Mikael Olsson

Titanium and titanium alloys such as Ti-6Al-4V are generally considered as difficult-to-machine materials. This is mainly due to their high chemical reactivity, poor thermal conductivity, and high strength, which is maintained at elevated temperatures. As a result, the cutting tool is exposed to rather extreme contact conditions resulting in plastic deformation and wear. In the present work, the mechanisms behind the crater and flank wear of uncoated cemented carbide inserts in the turning of Ti6Al4V are characterized using high-resolution scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and high-resolution Auger electron spectroscopy (AES).The results show that, for combinations of low cutting speeds and feeds, crater and flank wear were found to be controlled by an attrition wear mechanism, while for combinations of medium to high cutting speeds and feeds, a diffusion wear mechanism was found to control the wear. For the latter combinations, high-resolution SEM and AES analysis reveal the formation of an approximately 100 nm thick carbon-depleted tungsten carbide (WC)-layer at the cemented carbide/Ti6Al4V interface due to the diffusion of carbon into the adhered build-up layers of work material on the rake and flank surfaces.


Wear ◽  
2019 ◽  
Vol 430-431 ◽  
pp. 202-213 ◽  
Author(s):  
S. Saketi ◽  
U. Bexell ◽  
J. Östby ◽  
M. Olsson

2018 ◽  
Vol 279 ◽  
pp. 60-66
Author(s):  
Da Shan Bai ◽  
Jian Fei Sun ◽  
Kai Wang ◽  
Wu Yi Chen

In this paper, fine-grain WC/Co tools were utilized in dry turning of the Ti-6Al-4V alloy. The wear modes of the cutting tools at different cutting speeds were analyzed. The diffusion behavior between the cutting tool and the workpiece was studied in detail based on the Auger electron spectroscopy (AES) depth profile technology. The diffusion wear mechanism was revealed. The results showed that the diffusion layer formed at the interface between the cutting tool and the adhering material. The diffusion ability of C was the strongest, followed by W, the weakest was Co in all the elements of the cutting tool. The chemical reactions took place close to the adhering material, forming the reaction layer. As a diffusion barrier, it was possible to limit the elements diffusion from the cutting tool to the adhering material, decrease the changes in the cutting tool composition and damages. The diffusion layer, which was weakened by diffusion, was worn off and taken away by the fast flowing chip during the cutting process, causing the diffusion wear characterized by a smooth crater formation on the tool surface.


Sign in / Sign up

Export Citation Format

Share Document