The Effects of Thermal Radiation and Inclined Magnetic Force on Tangent Hyperbolic Fluid Flow with Zero Normal Flux of Nanoparticles at the Exponential Stretching Sheet

2018 ◽  
Vol 7 (5) ◽  
pp. 809-820 ◽  
Author(s):  
T. Gangaiah ◽  
N. Saidulu ◽  
A. Venkata Lakshmi
2019 ◽  
Vol 15 (2) ◽  
pp. 398-417 ◽  
Author(s):  
Subrata Das ◽  
Hiranmoy Mondal ◽  
Prabir Kumar Kundu ◽  
Precious Sibanda

PurposeThe focus of the paper is only on the contributions toward the use of entropy generation of non-Newtonian Casson fluid over an exponential stretching sheet. The purpose of this paper is to investigate the entropy generation and homogeneous–heterogeneous reaction. Velocity and thermal slips are considered instead of no-slip conditions at the boundary.Design/methodology/approachBasic equations in form of partial differential equations are converted into a system of ordinary differential equations and then solved using the spectral quasi-linearization method (SQLM).FindingsThe validity of the model is established using error analysis. Variation of the velocity, temperature, concentration profiles and entropy generation against some of the governing parameters are presented graphically. It is to be noted that the increase in entropy generation due to increase in heterogeneous reaction parameter is due to the increase in heat transfer irreversibility. It is further noted that the Bejan number decreases with Brinkman number because increase in Brinkman number reduces the total entropy generation.Originality/valueThis paper acquires realistic numerical explanations for rapidly convergent temperature and concentration profiles using the SQLM. Convergence of the numerical solutions was monitored using the residual error of the PDEs. The resulting equations are then integrated using the SQLM. The influence of emergent flow, heat and mass transfer parameters effects are shown graphically.


Author(s):  
Khadijah M. Abualnaja

This paper introduces a theoretical and numerical study for the problem of Casson fluid flow and heat transfer over an exponentially variable stretching sheet. Our contribution in this work can be observed in the presence of thermal radiation and the assumption of dependence of the fluid thermal conductivity on the heat. This physical problem is governed by a system of ordinary differential equations (ODEs), which is solved numerically by using the differential transformation method (DTM). This numerical method enables us to plot figures of the velocity and temperature distribution through the boundary layer region for different physical parameters. Apart from numerical solutions with the DTM, solutions to our proposed problem are also connected with studying the skin-friction coefficient. Estimates for the local Nusselt number are studied as well. The comparison of our numerical method with previously published results on similar special cases shows excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document