Analysis of tribological properties of graphite and aluminum composite materials prepared by powder metallurgy technique

2020 ◽  
Vol 10 (5) ◽  
pp. 663-670
Author(s):  
Zhigang Wang ◽  
Jun Li ◽  
Daquan Li

In order to make full use of the wear resistance and antifriction of the mixed reinforced particles, improve the performance and utilization rate of the composite material, and reduce its wear amount, in this study, graphite and aluminum composite materials with different graphite concentration were prepared by powder metallurgy process. On this basis, the influence of different graphite concentration on the friction coefficient and wear amount of composite samples and different load on the wear amount of composite materials were discussed and analyzed. The results show that with the increase of graphite content, the friction coefficient and wear amount of the composite will decrease correspondingly. When the load is less than 30 N, the wear curve of the sample changes steadily. When the load is more than 30 N, the wear will increase sharply. Therefore, the analysis of the tribological properties of the graphite and aluminum composites based on the powder metallurgy process plays an important role in improving the utilization rate of the composite and reducing its wear.

2010 ◽  
Vol 150-151 ◽  
pp. 1806-1809 ◽  
Author(s):  
Rong Fu ◽  
Fei Gao ◽  
Bao Yun Song

Copper-iron-based friction materials were prepared by powder metallurgy process. The effects of friction velocity and friction pressure on friction and wear behavior of the material under dry and wet friction conditions were investigated with a constant-speed friction machine. The results show that, at low speed friction, the dry friction coefficient is higher than wet friction coefficient and the friction coefficient increases with increasing friction pressure. The reason is that the water film plays an important role in cleaning and lubricating. At high speed friction, there is not much difference between dry and wet friction coefficients and the friction coefficient is not sensitive to friction pressure changes. This is due to the metal matrix high-temperature softening, caused by high speed friction, which controls the friction properties.


Copper matrix composite reinforced with fly ash is prepared by powder metallurgy process. Three composites with 0%, 2.5% and 5% fly ash proportion are prepared. The specimens were compacted at 450MPa and Sintered at 950℃ for a period of 30 minutes in powder metallurgy technique. The prepared specimens were subjected to different corrosion environments (alkaline and acidic) and the corroded surface will be analysed using SEM/EDX.


In recent years Al2024 alloy had increasing applications in all the areas due to its good formability, excellent properties and etc. By using nano size B4C as size and graphite as reinforcements the fabrication process are done by Powder metallurgy process with overall 12 compositions primary and secondary specimens. Nano B4C are used as reinforcements from 3-15% with step of 3% as primary specimen and with addition of graphite of 3% in every reinforcements same manufactured. All specimens are manufactured by powder metallurgy technique and had a wide application. Hardness values are taken and each specimen is subjected to aging process. In aging process are subjected to 495°C and soaking for 2 to 10 hours. The cooling process can done by in three medium water. In each case hardness values are taken with micro Vickers tests. All results are taken shows that increase in hardness with aging process. FESEM analysis is conducted to know the microstructure of composites


In the present study 4 different combinations of composites are prepared with varying proportions of graphite content by keeping the same proportion of copper, SiC and Fly ash through powder metallurgy process. hardness, Microstructure and tribological properties are studied with varying sliding velocities(1, 2 & 3m/s) and loading conditions (10, 30 and 50N). The addition of graphite reduces the hardness, but the wear behaviour is enhanced with its addition.


Sign in / Sign up

Export Citation Format

Share Document