Microtexture, Microstructure Evolution and Thermal Insulation Performance of Carbon Aerogels with High-Temperature Treatment

2019 ◽  
Vol 11 (12) ◽  
pp. 1692-1698 ◽  
Author(s):  
Haixia Yang ◽  
Jianchun Huo ◽  
Chunming Li ◽  
Feng Ye ◽  
Jingxiao Liu ◽  
...  

The microtexture, microstructure evolution and thermal insulation performance of carbon aerogels subjected to high-temperature treatment were investigated in detail. The results showed that carbon aerogels derived from resorcinol-formaldehyde (RF) resin were composed of fine particles and cavities, which consisted of typical non-graphitized carbon according to X-ray diffraction analysis. The microcrystallite size (La) of the CAs increased from 4.49 nm to 6.92 nm, and the specific surface area (SBET) and the total pore volume (Vtal) decreased from 727 to 290 m2/g and from 0.963 to 0.543 cm3/g, respectively, as the temperature increased from 900 °C to 1800 °C. The micropore-specific surface area and the micropore volume decreased with increasing treatment temperature, and a small amount of macropores (>50 nm) appeared at a temperature of 1500 to 1800 °C. The carbon aerogels retained their porous structure at higher temperature, which indicated that they hold potential for application in the field of thermal insulation in high-temperature environments.

RSC Advances ◽  
2020 ◽  
Vol 10 (37) ◽  
pp. 22242-22249
Author(s):  
Xichuan Liu ◽  
Lei Yuan ◽  
Minglong Zhong ◽  
Shuang Ni ◽  
Fan Yang ◽  
...  

Carbon aerogels (CAs) microspheres with good electrical conductivity and high specific surface area were synthesized by high temperature carbonization and CO2 activation method, which exhibit an enhanced capacitive performance in supercapacitors.


2020 ◽  
Vol 49 (16) ◽  
pp. 5006-5014 ◽  
Author(s):  
Yuanyuan Li ◽  
Nan Chen ◽  
Zengling Li ◽  
Huibo Shao ◽  
Liangti Qu

Carbon materials are widely used as capacitive deionization (CDI) electrodes due to their high specific surface area (SSA), superior conductivity, and better stability, including activated carbon, carbon aerogels, carbon nanotubes and graphene.


2013 ◽  
Vol 423-426 ◽  
pp. 523-527
Author(s):  
Xuan Liu ◽  
Zhen Fa Liu ◽  
Hao Lin Fu ◽  
Rui He ◽  
Li Hui Zhang

Phloroglucinol-resorcinol-formaldehyde organic aerogels (PRF) were prepared using phloroglucinol, resorcinol and formaldehyde in a sol-gel process, solvent replacement and drying at room temperature. The phloroglucinol-resorcinol-formaldehyde carbon aerogels (CPRF) were prepared by charring the PRF at high temperature under the aegis of helium flow. The microstructure of CPRF was characterized by infrared spectroscopy, specific surface area analyzer and scanning electron microscopy. The results showed that the CPRF had continuous network structure and high specific surface area.


2012 ◽  
Vol 560-561 ◽  
pp. 249-253 ◽  
Author(s):  
Blaž Skubic ◽  
Mitja Lakner ◽  
Igor Plazl

A new lightweight thermal insulation board, containing expanded perlite and inorganic silicate binder with corresponding industrial production procedure was developed. The industrial technology was developed in cooperation between company Trimo d.d. and Faculty of chemistry and chemical technology Ljubljana and among others includes mixing of raw materials, molding, microwave drying and high temperature treatment of the dried board. A new product has low density (130 – 160 kg/m3), good mechanical properties and durability and can be used in various fields where inorganic thermal insulation is required. The current work presents the experimental study of the final process during plate production – high temperature treatment with sintering. During thermal treatment of the board, certain shrinkage is required to obtain sufficient mechanical properties and durability. Controlling the process of high temperature thermal treatment is the key to achieve the right balance between low final density of the board and its good mechanical properties.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 178 ◽  
Author(s):  
Thye Foo Choo ◽  
Mohamad Amran Mohd Salleh ◽  
Kuan Ying Kok ◽  
Khamirul Amin Matori ◽  
Suraya Abdul Rashid

Mixture of aluminum dross (AD) and coal fly ash (CFA) was used to produce high-temperature porous mullite for washcoat application. CFA is the combustion by-product of pulverized coal in a coal-fired power plant, while AD is a waste product produced in secondary aluminum refining. In this study, 80 wt% of AD and 20 wt% of CFA was used to prepare a mullite precursor (MP) via acid leaching and dry-milling. The precursor was coated on a substrate and subsequently fired at 1500 °C. The results showed that the precursor transformed to a hierarchical porous microstructure assembled by large interlocked acicular mullite crystals. The pore structures consisted of large interconnected open pores and small pores. The specific surface area of the mullite washcoat was 4.85 m2g−1 after heating at 1500 °C for 4 h. The specific surface area was compatible with the specific surface area of other high-temperature washcoats.


2012 ◽  
Vol 24 (2) ◽  
pp. 370-374 ◽  
Author(s):  
刘西川 Liu Xichuan ◽  
袁磊 Yuan Lei ◽  
王朝阳 Wang Chaoyang ◽  
付志兵 Fu Zhibing ◽  
冯灏 Feng Hao ◽  
...  

2013 ◽  
Vol 25 (10) ◽  
pp. 2621-2626 ◽  
Author(s):  
常丽娟 Chang Lijuan ◽  
袁磊 Yuan Lei ◽  
付志兵 Fu Zhibing ◽  
韦建军 Wei Jianjun ◽  
唐永建 Tang Yongjian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document