Object-Based Classification of Airborne Light Detection and Ranging Point Clouds in Human Settlements

2012 ◽  
Vol 10 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Jing Shen ◽  
Jiping Liu ◽  
Xiangguo Lin ◽  
Rong Zhao
2017 ◽  
Vol 14 (5) ◽  
pp. 172988141773540 ◽  
Author(s):  
Robert A Hewitt ◽  
Alex Ellery ◽  
Anton de Ruiter

A classifier training methodology is presented for Kapvik, a micro-rover prototype. A simulated light detection and ranging scan is divided into a grid, with each cell having a variety of characteristics (such as number of points, point variance and mean height) which act as inputs to classification algorithms. The training step avoids the need for time-consuming and error-prone manual classification through the use of a simulation that provides training inputs and target outputs. This simulation generates various terrains that could be encountered by a planetary rover, including untraversable ones, in a random fashion. A sensor model for a three-dimensional light detection and ranging is used with ray tracing to generate realistic noisy three-dimensional point clouds where all points that belong to untraversable terrain are labelled explicitly. A neural network classifier and its training algorithm are presented, and the results of its output as well as other popular classifiers show high accuracy on test data sets after training. The network is then tested on outdoor data to confirm it can accurately classify real-world light detection and ranging data. The results show the network is able to identify terrain correctly, falsely classifying just 4.74% of untraversable terrain.


2020 ◽  
Vol 12 (9) ◽  
pp. 1379 ◽  
Author(s):  
Yi-Ting Cheng ◽  
Ankit Patel ◽  
Chenglu Wen ◽  
Darcy Bullock ◽  
Ayman Habib

Lane markings are one of the essential elements of road information, which is useful for a wide range of transportation applications. Several studies have been conducted to extract lane markings through intensity thresholding of Light Detection and Ranging (LiDAR) point clouds acquired by mobile mapping systems (MMS). This paper proposes an intensity thresholding strategy using unsupervised intensity normalization and a deep learning strategy using automatically labeled training data for lane marking extraction. For comparative evaluation, original intensity thresholding and deep learning using manually established labels strategies are also implemented. A pavement surface-based assessment of lane marking extraction by the four strategies is conducted in asphalt and concrete pavement areas covered by MMS equipped with multiple LiDAR scanners. Additionally, the extracted lane markings are used for lane width estimation and reporting lane marking gaps along various highways. The normalized intensity thresholding leads to a better lane marking extraction with an F1-score of 78.9% in comparison to the original intensity thresholding with an F1-score of 72.3%. On the other hand, the deep learning model trained with automatically generated labels achieves a higher F1-score of 85.9% than the one trained on manually established labels with an F1-score of 75.1%. In concrete pavement area, the normalized intensity thresholding and both deep learning strategies obtain better lane marking extraction (i.e., lane markings along longer segments of the highway have been extracted) than the original intensity thresholding approach. For the lane width results, more estimates are observed, especially in areas with poor edge lane marking, using the two deep learning models when compared with the intensity thresholding strategies due to the higher recall rates for the former. The outcome of the proposed strategies is used to develop a framework for reporting lane marking gap regions, which can be subsequently visualized in RGB imagery to identify their cause.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1102 ◽  
Author(s):  
Hugo Moreno ◽  
Constantino Valero ◽  
José María Bengochea-Guevara ◽  
Ángela Ribeiro ◽  
Miguel Garrido-Izard ◽  
...  

Crop 3D modeling allows site-specific management at different crop stages. In recent years, light detection and ranging (LiDAR) sensors have been widely used for gathering information about plant architecture to extract biophysical parameters for decision-making programs. The study reconstructed vineyard crops using light detection and ranging (LiDAR) technology. Its accuracy and performance were assessed for vineyard crop characterization using distance measurements, aiming to obtain a 3D reconstruction. A LiDAR sensor was installed on-board a mobile platform equipped with an RTK-GNSS receiver for crop 2D scanning. The LiDAR system consisted of a 2D time-of-flight sensor, a gimbal connecting the device to the structure, and an RTK-GPS to record the sensor data position. The LiDAR sensor was facing downwards installed on-board an electric platform. It scans in planes perpendicular to the travel direction. Measurements of distance between the LiDAR and the vineyards had a high spatial resolution, providing high-density 3D point clouds. The 3D point cloud was obtained containing all the points where the laser beam impacted. The fusion of LiDAR impacts and the positions of each associated to the RTK-GPS allowed the creation of the 3D structure. Although point clouds were already filtered, discarding points out of the study area, the branch volume cannot be directly calculated, since it turns into a 3D solid cluster that encloses a volume. To obtain the 3D object surface, and therefore to be able to calculate the volume enclosed by this surface, a suitable alpha shape was generated as an outline that envelops the outer points of the point cloud. The 3D scenes were obtained during the winter season when only branches were present and defoliated. The models were used to extract information related to height and branch volume. These models might be used for automatic pruning or relating this parameter to evaluate the future yield at each location. The 3D map was correlated with ground truth, which was manually determined, pruning the remaining weight. The number of scans by LiDAR influenced the relationship with the actual biomass measurements and had a significant effect on the treatments. A positive linear fit was obtained for the comparison between actual dry biomass and LiDAR volume. The influence of individual treatments was of low significance. The results showed strong correlations with actual values of biomass and volume with R2 = 0.75, and when comparing LiDAR scans with weight, the R2 rose up to 0.85. The obtained values show that this LiDAR technique is also valid for branch reconstruction with great advantages over other types of non-contact ranging sensors, regarding a high sampling resolution and high sampling rates. Even narrow branches were properly detected, which demonstrates the accuracy of the system working on difficult scenarios such as defoliated crops.


2017 ◽  
Vol 32 (160) ◽  
pp. 377-397 ◽  
Author(s):  
Andreas Mayr ◽  
Martin Rutzinger ◽  
Magnus Bremer ◽  
Sander Oude Elberink ◽  
Felix Stumpf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document