Detection of Optimized Intermediate Sensor Nodes Using Carrier Sensing Power and Genus Factor for Energy Efficient Multipath Routing Protocol in Wireless Sensor Networks

2019 ◽  
Vol 17 (4) ◽  
pp. 290-295
Author(s):  
K. Stella ◽  
T. Manikandan ◽  
E. N. Ganesh
Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1515 ◽  
Author(s):  
Alma Rodríguez ◽  
Carolina Del-Valle-Soto ◽  
Ramiro Velázquez

The usage of wireless sensor devices in many applications, such as in the Internet of Things and monitoring in dangerous geographical spaces, has increased in recent years. However, sensor nodes have limited power, and battery replacement is not viable in most cases. Thus, energy savings in Wireless Sensor Networks (WSNs) is the primary concern in the design of efficient communication protocols. Therefore, a novel energy-efficient clustering routing protocol for WSNs based on Yellow Saddle Goatfish Algorithm (YSGA) is proposed. The protocol is intended to intensify the network lifetime by reducing energy consumption. The network considers a base station and a set of cluster heads in its cluster structure. The number of cluster heads and the selection of optimal cluster heads is determined by the YSGA algorithm, while sensor nodes are assigned to its nearest cluster head. The cluster structure of the network is reconfigured by YSGA to ensure an optimal distribution of cluster heads and reduce the transmission distance. Experiments show competitive results and demonstrate that the proposed routing protocol minimizes the energy consumption, improves the lifetime, and prolongs the stability period of the network in comparison with the stated of the art clustering routing protocols.


IET Networks ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 321-328 ◽  
Author(s):  
Muhammad Khalid ◽  
Farah Ahmad ◽  
Muhammad Arshad ◽  
Waqar Khalid ◽  
Naveed Ahmad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document