Design of a Sensor System Using Fiber Bragg Grating for Liquid Level and Liquid Density Measurement

2020 ◽  
Vol 18 (12) ◽  
pp. 889-893
Author(s):  
Kalyan Biswas

In this work, a simple but versatile sensing system for very accurate sensing of liquid level and liquid density is presented. The sensor works based on basic strain sensitivity of Fiber Bragg Grating (FBG) and principle of liquid obeying Archimedes’ law of buoyancy. In this system, a cylindrical shaped mass suspended from a Fiber Bragg Grating and partially immersed in the liquid to be sensed. If the liquid level in the container or liquid density varies, that change the up thrust on the suspended mass and load on the Fiber will be changed accordingly. The change in the load on Fiber changes strain on the FBG and the reflected Bragg wavelength also changes. The proposed device with proper calibration should be able to carry out real time and nonstop liquid level and liquid density measurements. A mathematical analysis of the system considering liquid properties and geometrical structure of the suspended mass is presented here. Sensitivity of the system for liquid level monitoring is also reported. Achieved results shows the path for the utilization of the proposed sensor system for precise liquid density measurement and liquid level sensing in very large storage tanks used for commercial/residential applications.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4298 ◽  
Author(s):  
Aliya Bekmurzayeva ◽  
Kanat Dukenbayev ◽  
Madina Shaimerdenova ◽  
Ildar Bekniyazov ◽  
Takhmina Ayupova ◽  
...  

A biosensor based on an etched Fiber Bragg Grating (EFBG) for thrombin detection is reported. The sensing system is based on a Fiber Bragg Grating (FBG) with a Bragg wavelength of 1550 nm, wet-etched in hydrofluoric acid (HF) for ~27 min, to achieve sensitivity to a refractive index (RI) of 17.4 nm/RIU (refractive index unit). Subsequently, in order to perform a selective detection of thrombin, the EFBG has been functionalized with silane-coupling agent 3-(aminopropyl)triethoxysilane (APTES) and a cross-linker, glutaraldehyde, for the immobilization of thrombin-binding aptamer. The biosensor has been validated for thrombin detection in concentrations ranging from 10 nM to 80 nM. The proposed sensor presents advantages with respect to other sensor configurations, based on plasmonic resonant tilted FBG or Long Period Grating (LPG), for thrombin detection. Firstly, fabricating an EFBG only requires chemical etching. Moreover, the functionalization method used in this study (silanization) allows the avoidance of complicated and expensive fabrications, such as thin film sputtering or chemical vapor deposition. Due to their characteristics, EFBG sensors are easier to multiplex and can be used in vivo. This opens new possibilities for the detection of thrombin in clinical settings.


2011 ◽  
Vol 403-408 ◽  
pp. 2364-2367
Author(s):  
Jun Su ◽  
Wei Qing Song ◽  
Hong Lin Chen ◽  
Xiu Feng Yang ◽  
Zheng Rong Tong ◽  
...  

The theory of fiber Bragg grating demodulation system based on unbalanced Mach-Zehnder (M-Z) interferometer is introduced. A novel design for demodulation of fiber Bragg grating sensor system based on the LabView Software is proposed and demonstrated. The system is obtained by making use of piezoelectric ceramic (PZT) technology achieving phase carrier modulation. Carrier signal is collected by data acquisition card(DAQ), and the phase modulation of signal is detected by discrete fourier transform(DFT). It realizes real-time demodulation for multiplexed sensing system.


2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Odai Falah Ameen ◽  
Marwan Hafeedh Younus ◽  
M. S. Aziz ◽  
RK Raja Ibrahim

In this work, measurement of temperature and liquid level were performed simultaneously using fiber Bragg grating (FBG) sensors. A multi-channel Fibre Interrogator with built-in ASE laser source operating around 1552 to 1568 nm was employed to record a shift in Bragg wavelength due to contribution from both temperature and hydrostatic pressure of liquid weight in the tank. Results show a linear response between liquid level and temperature readings against the shift in Bragg wavelength for liquid level up to 85 cm in height and the temperature range of 27 to 77 oC. The sensitivity of the sensor head for water level measurement is 10.57 pmcm-1, while the sensitivity for temperature measurement is 11.28 pm/oC respectively.


2009 ◽  
Vol 23 (10) ◽  
pp. 2349-2356 ◽  
Author(s):  
BASHIR AHMED TAHIR ◽  
JALIL ALI ◽  
ROSLY ABDUL RAHMAN

In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0–285°C. A dynamic range of 0–285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.


Sign in / Sign up

Export Citation Format

Share Document