scholarly journals Reflexive and preparatory selection and suppression of salient information in the right and left posterior parietal cortex

2010 ◽  
Vol 8 (6) ◽  
pp. 394-394
Author(s):  
C. Mevorach ◽  
G. Humphreys ◽  
L. Shalev
2009 ◽  
Vol 21 (6) ◽  
pp. 1204-1214 ◽  
Author(s):  
Carmel Mevorach ◽  
Glyn W. Humphreys ◽  
Lilach Shalev

Attentional cues can trigger activity in the parietal cortex in anticipation of visual displays, and this activity may, in turn, induce changes in other areas of the visual cortex, hence, implementing attentional selection. In a recent TMS study [Mevorach, C., Humphreys, G. W., & Shalev, L. Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nature Neuroscience, 9, 740–742, 2006b], it was shown that the posterior parietal cortex (PPC) can utilize the relative saliency (a nonspatial property) of a target and a distractor to bias visual selection. Furthermore, selection was lateralized so that the right PPC is engaged when salient information must be selected and the left PPC when the salient information must be ignored. However, it is not clear how the PPC implements these complementary forms of selection. Here we used on-line triple-pulse TMS over the right or left PPC prior to or after the onset of global/local displays. When delivered after the onset of the display, TMS to the right PPC disrupted the selection of the more salient aspect of the hierarchical letter. In contrast, left PPC TMS delivered prior to the onset of the stimulus disrupted responses to the lower saliency stimulus. These findings suggest that selection and suppression of saliency, rather than being “two sides of the same coin,” are fundamentally different processes. Selection of saliency seems to operate reflexively, whereas suppression of saliency relies on a preparatory phase that “sets up” the system in order to effectively ignore saliency.


2020 ◽  
Vol 10 (5) ◽  
pp. 317
Author(s):  
Koichi Hiraoka ◽  
Shintaro Gonno ◽  
Ryota Inomoto

The present study examined whether the left posterior parietal cortex contributes to the selection process for the initial swing leg in gait initiation. Healthy humans initiated the gait in response to an auditory start cue. Transcranial magnetic stimulation (TMS) was given over P3, P4, F3 or F4 simultaneously, with the auditory start cue, in the on-TMS condition. A coil was placed over one of the four TMS sites, but TMS was not given in the off-TMS condition. The probability of right leg selection in the on-TMS condition was significantly lower than in the off-TMS condition when the coil was placed over P3, indicating that the left posterior parietal cortex contributes to the selection process of the initial swing leg of gait initiation. The latency of the anticipatory postural adjustment for gait initiation with the left leg was shortened by TMS over F4 or P4, but with the right leg was shortened by TMS over P3 or P4. Thus, the cortical process affecting the time taken to execute the motor process of gait initiation with the right leg may be related to the selection process of the initial swing leg of gait initiation.


2020 ◽  
Author(s):  
Joshua M. Carlson ◽  
Lin Fang

AbstractIn a sample of highly anxious individuals, the relationship between gray matter volume brain morphology and attentional bias to threat was assessed. Participants performed a dot-probe task of attentional bias to threat and gray matter volume was acquired from whole brain structural T1-weighted MRI scans. The results replicate previous findings in unselected samples that elevated attentional bias to threat is linked to greater gray matter volume in the anterior cingulate cortex, middle frontal gyrus, and striatum. In addition, we provide novel evidence that elevated attentional bias to threat is associated with greater gray matter volume in the right posterior parietal cortex, cerebellum, and other distributed regions. Lastly, exploratory analyses provide initial evidence that distinct sub-regions of the right posterior parietal cortex may contribute to attentional bias in a sex-specific manner. Our results illuminate how differences in gray matter volume morphology relate to attentional bias to threat in anxious individuals. This knowledge could inform neurocognitive models of anxiety-related attentional bias to threat and targets of neuroplasticity in anxiety interventions such as attention bias modification.


2009 ◽  
Vol 19 (10) ◽  
pp. 2321-2325 ◽  
Author(s):  
Z. Cattaneo ◽  
F. Rota ◽  
V. Walsh ◽  
T. Vecchi ◽  
J. Silvanto

Author(s):  
Takehiro Minamoto ◽  
Miyuki Azuma ◽  
Ken Yaoi ◽  
Aoi Ashizuka ◽  
Tastuya Mima ◽  
...  

2006 ◽  
Vol 247 (2) ◽  
pp. 144-148 ◽  
Author(s):  
Brigida Fierro ◽  
Filippo Brighina ◽  
Giuseppe Giglia ◽  
Antonio Palermo ◽  
Margherita Francolini ◽  
...  

2015 ◽  
Vol 27 (2) ◽  
pp. 377-386 ◽  
Author(s):  
Dario Cazzoli ◽  
René M. Müri ◽  
Christopher Kennard ◽  
Clive R. Rosenthal

When briefly presented with pairs of words, skilled readers can sometimes report words with migrated letters (e.g., they report hunt when presented with the words hint and hurt). This and other letter migration phenomena have been often used to investigate factors that influence reading such as letter position coding. However, the neural basis of letter migration is poorly understood. Previous evidence has implicated the right posterior parietal cortex (PPC) in processing visuospatial attributes and lexical properties during word reading. The aim of this study was to assess this putative role by combining an inhibitory TMS protocol with a letter migration paradigm, which was designed to examine the contributions of visuospatial attributes and lexical factors. Temporary interference with the right PPC led to three specific effects on letter migration. First, the number of letter migrations was significantly increased only in the group with active stimulation (vs. a sham stimulation group or a control group without stimulation), and there was no significant effect on other error types. Second, this effect occurred only when letter migration could result in a meaningful word (migration vs. control context). Third, the effect of active stimulation on the number of letter migrations was lateralized to target words presented on the left. Our study thus demonstrates that the right PPC plays a specific and causal role in the phenomenon of letter migration. The nature of this role cannot be explained solely in terms of visuospatial attention, rather it involves an interplay between visuospatial attentional and word reading-specific factors.


Sign in / Sign up

Export Citation Format

Share Document