scholarly journals Signaling pathways in insulin action: molecular targets of insulin resistance

2000 ◽  
Vol 106 (2) ◽  
pp. 165-169 ◽  
Author(s):  
Jeffrey E. Pessin ◽  
Alan R. Saltiel
2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Sandro M. Hirabara ◽  
Renata Gorjão ◽  
Marco A. Vinolo ◽  
Alice C. Rodrigues ◽  
Renato T. Nachbar ◽  
...  

Inflammation and insulin resistance are common in several chronic diseases, such as obesity, type 2diabetes mellitus, metabolic syndrome, cancer, and cardiovascular diseases. Various studies show a relationship between these two factors, although the mechanisms involved are not completely understood yet. Here, we discuss the molecular basis of insulin resistance and inflammation and the molecular aspects on inflammatory pathways interfering in insulin action. Moreover, we explore interventions based on molecular targets for preventing or treating correlated disorders, advances for a better characterization, and understanding of the mechanisms and mediators involved in the different inflammatory and insulin resistance conditions. Finally, we address biotechnological studies for the development of new potential therapies and interventions.


2021 ◽  
Vol 160 ◽  
pp. 103277
Author(s):  
Ana Carolina B. da C. Rodrigues ◽  
Rafaela G.A. Costa ◽  
Suellen L.R. Silva ◽  
Ingrid R.S.B. Dias ◽  
Rosane B. Dias ◽  
...  

1987 ◽  
Vol 22 (3) ◽  
pp. 286-291 ◽  
Author(s):  
Mitchell E Geffner ◽  
Solomon A Kaplan ◽  
Noelle Bersch ◽  
Barbara M Lippe ◽  
Wesley G Smith ◽  
...  

2017 ◽  
Vol 114 (40) ◽  
pp. E8478-E8487 ◽  
Author(s):  
Masahiro Konishi ◽  
Masaji Sakaguchi ◽  
Samuel M. Lockhart ◽  
Weikang Cai ◽  
Mengyao Ella Li ◽  
...  

Insulin receptors (IRs) on endothelial cells may have a role in the regulation of transport of circulating insulin to its target tissues; however, how this impacts on insulin action in vivo is unclear. Using mice with endothelial-specific inactivation of the IR gene (EndoIRKO), we find that in response to systemic insulin stimulation, loss of endothelial IRs caused delayed onset of insulin signaling in skeletal muscle, brown fat, hypothalamus, hippocampus, and prefrontal cortex but not in liver or olfactory bulb. At the level of the brain, the delay of insulin signaling was associated with decreased levels of hypothalamic proopiomelanocortin, leading to increased food intake and obesity accompanied with hyperinsulinemia and hyperleptinemia. The loss of endothelial IRs also resulted in a delay in the acute hypoglycemic effect of systemic insulin administration and impaired glucose tolerance. In high-fat diet-treated mice, knockout of the endothelial IRs accelerated development of systemic insulin resistance but not food intake and obesity. Thus, IRs on endothelial cells have an important role in transendothelial insulin delivery in vivo which differentially regulates the kinetics of insulin signaling and insulin action in peripheral target tissues and different brain regions. Loss of this function predisposes animals to systemic insulin resistance, overeating, and obesity.


1982 ◽  
Vol 243 (1) ◽  
pp. E15-E30 ◽  
Author(s):  
J. M. Olefsky ◽  
O. G. Kolterman ◽  
J. A. Scarlett

Resistance to the action of insulin can result from a variety of causes, including the formation of abnormal insulin or proinsulin molecules, the presence of circulating antagonists to insulin or the insulin receptor, or defects in insulin action at the target tissue level. Defects of the latter type are characteristic of obesity and of noninsulin-dependent diabetes mellitus. Analysis of the nature of the insulin resistance in those disorders has been investigated in intact subjects with the use of the euglycemic glucose clamp technique, and both insulin receptors and insulin-mediated glucose metabolism have been studied in adipocytes and monocytes from affected individuals. In both conditions, the cause of insulin resistance is heterogeneous. In some, insulin resistance appears to be due to a defect in the insulin receptor, whereas others have a defect both in the receptor and at the postreceptor level. In both groups, more severe insulin resistance is due to the postreceptor lesion and is correctable with appropriate therapy.


2000 ◽  
Vol 88 (6) ◽  
pp. 2116-2122 ◽  
Author(s):  
Maria Niklasson ◽  
Peter Daneryd ◽  
Peter Lönnroth ◽  
Agneta Holmäng

Administration of testosterone (T) to oophorectomized (Ovx) female rats is followed by severe insulin resistance, localized to postreceptor cellular events in the muscle. In this study, intervention by exercise was introduced to examine whether circulatory adaptations are involved in insulin resistance. Two groups of Ovx rats were studied: one group was given T (Ovx+T); another group had free access to running wheels (Ovx+T+Ex). In addition, one control group (sham operated) was studied. Insulin sensitivity was measured with the euglycemic hyperinsulinemic clamp technique (submaximal) for 150 min. Muscle interstitial glucose and insulin concentrations were measured by microdialysis. The measurements showed that, in Ovx+T rats, the onset of insulin action was significantly ( P < 0.05) slower during the first 95 min of the clamp compared with that in Ovx+T+Ex and controls. Muscle interstitial concentrations of insulin but not glucose were lower in both Ovx+T and Ovx+T+Ex rats than in controls throughout the clamp. It was concluded that physical exercise prevented the slow onset of insulin action in Ovx+T rats without changing the distribution time of muscle interstitial insulin. The results indicate that hyperandrogenicity is characterized by delayed muscle insulin action. Physical exercise reverses these defects without any beneficial effect on muscle interstitial insulin concentrations.


Sign in / Sign up

Export Citation Format

Share Document