scholarly journals Parasite antigen-specific human T cell lines and clones. Major histocompatibility complex restriction and B cell helper function.

1984 ◽  
Vol 73 (6) ◽  
pp. 1754-1762 ◽  
Author(s):  
T B Nutman ◽  
E A Ottesen ◽  
A S Fauci ◽  
D J Volkman
1985 ◽  
Vol 161 (1) ◽  
pp. 223-241 ◽  
Author(s):  
H P Tony ◽  
D C Parker

Anti-Ig has been widely used as a model for antigen receptor-mediated B cell activation. B cells activated with mitogenic concentrations of anti-Ig (approximately 10 micrograms/ml) become responsive to a set of T cell-derived, antigen-nonspecific helper factors that enable the B cells to proliferate, and, in some cases, mature to Ig secretion. In the present experiments, we show that anti-Ig can also be used as a model for major histocompatibility complex (MHC)-restricted, antigen-specific T-B cell collaboration. We used murine helper T cell lines and T cell hybridomas specific for a protein antigen, the F(ab')2 fragment of normal rabbit IgG. Small B cells are very efficient at presenting rabbit anti-IgM or rabbit anti-IgD to these rabbit Ig-specific T cell lines and hybridomas, and the responding (initially) small B cells, appear to be the only antigen-presenting cells required. Efficient presentation depends upon binding of rabbit antibody to mIg on the B cell surface. MHC-restricted recognition of rabbit Ig determinants on the B cell surface results in a polyclonal B cell response. This response is qualitatively different from the well-studied response to blastogenic concentrations of anti-Ig plus stable, T cell-derived helper factors, since it (a) requires 1,000-fold lower concentrations of anti-Ig, (b) involves helper T cell functions other than, or in addition to, the local production of the same stable helper factors, and (c) is largely MHC-restricted at the T-B cell level.


1983 ◽  
Vol 157 (5) ◽  
pp. 1675-1680 ◽  
Author(s):  
S M Friedman ◽  
G S Thompson

Using a panel of partially cloned, OKT4+, DRw-1-specific, alloproliferative human T cell lines, we have identified two functionally restricted and reciprocating types of helper T cells. One provides major histocompatibility complex-restricted help for plaque-forming cell responses by DRw 1+ allogeneic B cells; the other preferentially amplifies the generation of allospecific cytotoxic T lymphocytes (CTL) from CTL precursors that have been suboptimally triggered by alloantigen.


1989 ◽  
Vol 86 (17) ◽  
pp. 6729-6733 ◽  
Author(s):  
M Z Atassi ◽  
M Yoshioka ◽  
G S Bixler

Processing of a protein antigen into fragments is believed to be a prerequisite for its presentation by the antigen-presenting cell to the T cell. This model would predict that, in oligomeric proteins, T cells prepared with specificity for regions that are buried within subunit association surfaces should recognize the respective regions in vitro equally well on the isolated subunit or on the oligomer. Three hemoglobin (Hb) alpha-chain synthetic peptides, corresponding to areas that are situated either completely [alpha-(31-45)] or partially [alpha-(41-45) and alpha-(81-95)] within the interface between the alpha and beta subunits of Hb, and a fourth peptide representing a completely exposed area in tetrameric Hb were used as immunogens in SJL/J (H-2s) mice. Peptide-primed T cells were passaged in vitro with the respective peptide to obtain peptide-specific T-lymphocyte lines. T-cell clones were isolated from these lines by limiting dilution. T-cell lines and clones that were specific for buried regions in the subunit association surfaces recognized the free peptide and the isolated subunit but not the Hb tetramer. On the other hand, T cells with specificity against regions that are not involved in subunit interaction and are completely exposed in the tetramer recognized the peptide, the isolated subunit, and the oligomeric protein equally well. The responses of the T-cell lines and clones were major histocompatibility complex-restricted. Since the same x-irradiated antigen-presenting cells were employed, the results could not be attributed to differences or defects in Hb processing. The findings indicate that in vitro the native (unprocessed and undissociated) oligomeric protein was the trigger of major histocompatibility complex-restricted T-cell responses.


1995 ◽  
Vol 182 (6) ◽  
pp. 2007-2018 ◽  
Author(s):  
S M Behar ◽  
S A Porcelli ◽  
E M Beckman ◽  
M B Brenner

A class of molecules that is expressed on antigen presenting cells, exemplified by CD80 (B7), has been found to provide a necessary costimulatory signal for T cell activation and proliferation. CD28 and CTLA4 are the B7 counterreceptors and are expressed on the majority of human CD4+ T cells and many CD8+ T cells. The signal these molecules mediate is distinguished from other costimulatory signals by the finding that T cell recognition of antigen results in a prolonged state of T cell unresponsiveness or anergy, unless these costimulatory molecules are engaged. However, nearly half of the CD8+ and CD4-CD8- T cells lack CD28, and the costimulatory signals required for the activation of such cells are unknown. To understand the pathways of activation used by CD28- T cells, we have examined the costimulatory requirements of antigen-specific CD4-CD8- TCR(+)-alpha/beta circulating T cells that lack the expression of CD28. We have characterized two T cell lines, DN1 and DN6, that recognize a mycobacterial antigen, and are restricted not by major histocompatibility complex class I or II, but by CD1b or CD1c, two members of a family of major histocompatibility complex-related molecules that have been recently implicated in a distinct pathway for antigen presentation. Comparison of antigen-specific cytolytic responses of the DN1 and DN6 T cell lines against antigen-pulsed CD1+ monocytes or CD1+ B lymphoblastoid cell lines (B-LCL) demonstrated that these T cells recognized antigen presented by both types of cells. However, T cell proliferation occurred only when antigen was presented by CD1+ monocytes, indicating that the CD1+ monocytes expressed a costimulatory molecule that the B-LCL transfectants lacked. This hypothesis was confirmed by demonstrating that the T cells became anergic when incubated with the CD1(+)-transfected B-LCL in the presence of antigen, but not in the absence of antigen. The required costimulatory signal occurred by a CD28-independent mechanism since both the CD1+ monocytes and CD1+ B-LCL transfectants expressed B7-1 and B7-2, and DN1 and DN6 lacked surface expression of CD28. We propose that these data define a previously unrecognized pathway of costimulation for T cells distinct from that involving CD28 and its counterreceptors. We suggest that this B7-independent pathway plays a crucial role in the activation and maintenance of tolerance of at least a subset of CD28- T cells.


Author(s):  
Wahiba Ezzemani ◽  
Marc P. Windisch ◽  
Anass Kettani ◽  
Haya Altawalah ◽  
Jalal Nourlil ◽  
...  

Background: Globally, the recent outbreak of Zika virus (ZIKV) in Brazil, Asia Pacific, and other countries highlighted the unmet medical needs. Currently, there are neither effective vaccines nor therapeutics available to prevent or treat ZIKV infection. Objective: In this study, we aimed to design an epitope-based vaccine for ZIKV using an in silico approach to predict and analyze B- and T-cell epitopes. Methods: The prediction of the most antigenic epitopes has targeted the capsid and the envelope proteins as well as nonstructural proteins NS5 and NS3 using immune-informatics tools PROTPARAM, CFSSP, PSIPRED, and Vaxijen v2.0. B and T-cell epitopes were predicted using ABCpred, IEDB, TepiTool, and their toxicity were evaluated using ToxinPred. The 3-dimensional epitope structures were generated by PEP-FOLD. Energy minimization was performed using Swiss-Pdb Viewer, and molecular docking was conducted using PatchDock and FireDock server. Results: As a result, we predicted 307 epitopes of MHCI (major histocompatibility complex class I) and 102 epitopes of MHCII (major histocompatibility complex class II). Based on immunogenicity and antigenicity scores, we identified the four most antigenic MHC I epitopes: MVLAILAFLR (HLA-A*68 :01), ETLHGTVTV (HLA-A*68 :02), DENHPYRTW (HLA-B*44 :02),QEGVFHTMW (HLA-B*44 :03) and TASGRVIEEW (HLA-B*58:01), and MHC II epitopes: IIKKFKKDLAAMLRI (HLA-DRB3*02 :02), ENSKMMLELDPPFGD (HLA-DRB3*01:01), HAETWFFDENHPYRT (HLA-DRB3*01:01), TDGVYRVMTRRLLGS (HLA-DRB1*11 :01), and DGCWYGMEIRPRKEP (HLA-DRB5*01:01). Conclusion : This study provides novel potential B cell and T cell epitopes to fight Zika virus infections and may prompt further development of vaccines against ZIKV and other emerging infectious diseases. However, further investigations for protective immune response by in vitro and in vivo studies to ratify the immunogenicity, safety of the predicted structure, and ultimately the vaccine properties to prevent ZIKV infections are warranted.


1973 ◽  
Vol 138 (6) ◽  
pp. 1289-1304 ◽  
Author(s):  
David H. Sachs ◽  
James L. Cone

Antibodies cytotoxic for only a subpopulation of C57Bl/10 lymph node and spleen cells were detected when rat antiserum against B10.D2 was exhaustively absorbed with B10.A lymphocytes. Antibodies of similar specificity were also detected in B10.A anti-B10.D2 and in B10.A anti-C57Bl/10 alloantisera. Reactions with recombinant strains of mice indicate that the cell-surface antigen(s) responsible for this specificity is determined by gene(s) in or to the left of the Ir-1 region of the major histocompatibility complex. A variety of criteria implicate B cells as the subpopulation of lymphocytes bearing this antigen. In view of these data and the recent report by others of a T-cell alloantigen determined by gene(s) in the major histocompatibility complex, it seems possible that there may be a variety of H-2-linked alloantigens expressed preferentially on subclasses of lymphocytes.


1980 ◽  
Vol 152 (5) ◽  
pp. 1289-1301 ◽  
Author(s):  
A Pacifico ◽  
J D Capra

T cell hybrids have been constructed between the BW5147 thymoma cell line and A/J splenocytes from mice suppressed with the p-azophenylarsonte hapten. Three independently derived cloned lines have been chracterized. Each secretes or sheds a 62,000-dalton antigen-specific product bound by rabbit antisera directed against the arsonate cross-reactive idiotype. In addition, each of the antien-specific molecules contains determinants encoded within the I region of the murine major histocompatibility complex. Peptide mapping analysis indictes that, whereas these molecules are remarkably similar, each is individually distinct in primary structure. The availability of cloned T cell lines that produce antigen-specific idiotype-positive I region-containing products should facilitate a more thorough dissection of the interrelationships of T-B interctions in the arsonate idiotypic system.


1981 ◽  
Vol 154 (4) ◽  
pp. 1100-1115 ◽  
Author(s):  
Y Asano ◽  
A Singer ◽  
RJ Hodes

The present study has evaluated the identity of the B cell subpopulations participating in T dependent antibody responses that differ in their requirements for major histocompatibility complex-restricted T cell recognition. In vitro responses of keyhole limpet hemocyanin (KLH)-primed T cells and trinitrophenyl (TNP)-primed B cells were studied to both low and high concentrations of the antigen TNP-KLH. It was first demonstrated that for responses to low concentrations of TNP-KLH, (A × B)F(1) {arrow} parent(A) chimeric helper T cells were restricted in their ability to recognize parent(A) but not parent(B) H-2 determinants expressed by both B cells and antigen-presenting cells (APC). In contrast, at higher antigen concentrations, helper T cells were not restricted in their interaction with B cells. It was then determined whether these observed differences in T cell recognition resulted from the activation of distinct B cell subpopulations with different activation requirements. At low concentrations of TNP-KLH it was demonstrated that Lyb-5(-) B cells were activated, and that it was thus the activation of the Lyb-5(-) subpopulation that required T cell recognition of B cell H-2 under these conditions. In contrast, responses to high concentration of antigen required the participation of Lyb-5(+) B cells, and these Lyb-5(+) B cells were activated by a pathway that required H-2- restricted T cell interaction with APC, but not with B cells. The findings presented here have demonstrated that Lyb-5(-) and Lyb-5(+) B cells constitute B cell subpopulations that differ significantly in their activation requirements for T cell-dependent antibody responses to TNP-KLH. In so doing, these findings have established that the function of genetic restrictions in immune response regulation is critically dependent upon the activation pathways employed by functionally distinct subpopulations of B, as well as T, lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document