scholarly journals Control of polyclonal immunoglobulin production from human lymphocytes by leukotrienes; leukotriene B4 induces an OKT8(+), radiosensitive suppressor cell from resting, human OKT8(-) T cells.

1984 ◽  
Vol 74 (4) ◽  
pp. 1444-1450 ◽  
Author(s):  
D Atluru ◽  
J S Goodwin
Immunology ◽  
2015 ◽  
Vol 146 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Jiaoyan Lv ◽  
Linlin Zou ◽  
Lina Zhao ◽  
Wei Yang ◽  
Yingluo Xiong ◽  
...  

Blood ◽  
1996 ◽  
Vol 88 (2) ◽  
pp. 721-730 ◽  
Author(s):  
H Segall ◽  
I Lubin ◽  
H Marcus ◽  
A Canaan ◽  
Y Reisner

Severe combined immunodeficient (SCID) mice are increasingly used as hosts for the adoptive transfer of human lymphocytes. Human antibody responses can be obtained in these xenogeneic chimeras, but information about the functionality of the human T cells in SCID mice is limited and controversial. Studies using human peripheral blood lymphocytes (PBL) injected intraperitoneally (IP) into SCID mice (hu-PBL-SCID mice) have shown that human T cells from these chimeras are anergic and have a defective signaling via the T-cell receptor. In addition, their antigenic repertoire is limited to xenoreactive clones. In the present study, we tested the functionality of human T cell in a recently described chimeric model. In this system, BALB/c mice are conditioned by irradiation and then transplanted with SCID bone marrow, followed by IP injection of human PBL. Our experiments demonstrated that human T cells, recovered from these hu-PBL-BALB mice within 1 month posttransplant, proliferated and expressed activation markers upon stimulation with anti-CD3 monoclonal antibody. A vigorous antiallogeneic human cytotoxic T-lymphocyte (CTL) response could be generated in these mice by immunizing them with irradiated allogeneic cells. Moreover, anti-human immunodeficiency virus type 1 (HIV-1) Net- specific human CTLs could be generated in vivo from naive lymphocytes by immunization of mouse-human chimeras with a recombinant vaccinia-nef virus. This model may be used to evaluate potential immunomodulatory drugs or cytokines, and could provide a relevant model for testing HIV vaccines, for production of antiviral T-cell clones for adoptive therapy, and for studying human T-cell responses in vivo.


1995 ◽  
Vol 163 (2) ◽  
pp. 245-253 ◽  
Author(s):  
Eva Andersson ◽  
Mats Ohlin ◽  
Carl A.K. Borrebaeck ◽  
Roland Carlsson

1997 ◽  
Vol 27 (8) ◽  
pp. 2073-2079 ◽  
Author(s):  
Kazunaga Agematsu ◽  
Haruo Nagumo ◽  
Fen-Chun Yang ◽  
Takayuki Nakazawa ◽  
Keitaro Fukushima ◽  
...  

1976 ◽  
Vol 144 (3) ◽  
pp. 662-673 ◽  
Author(s):  
R S Krakauer ◽  
T A Waldmann ◽  
W Strober

We have investigated suppressor T-cell activity in female NZB/NZW F1 mice using PWM-driven IgM biosynthesis in vitro as an indicator system. In initial we studied we observed that spleen cells from normal mice (BALB/c, C57BL/6), as well as from young (4 wk) and adult (18 wk) NZB/NZW mice, cultured in the presence of PWM synthesize 860 +/- 120 ng IgM/10(6) cells/7 days. However, when Con A (at 2 mug/ml) was added directly to the cultures (along with PWM), cells obtained from adult normal mice and young NZB/NZW mice showed a 94% suppression of IgM synthesis, whereas cells obtained from adult NZB/NZW mice were suppressed significantly less. To analyze these findings we studied the effect of Con A-induced suppressor cells (cells cultured with Con A for 24 h and washed free of Con A) on PWM-driven IgM biosynthesis. Spleen cells obtained from normal mice cultured in the presence of Con A-pulsed cells obtained from normal mice and young NZB/NZW mice showed an 83-88% suppression of PWM-driven IgM synthesis. Similarly, supernates obtained from Con A-pulsed cells of normal mice or of young NZB/NZW mice suppressed PWM-driven IgM synthesis. This suppression by Con A-pulsed cells and their supernates required T cells since T-cell fractions but not B-cell fractions eluted from anti-Fab Sephadex columns mediated suppression of co-cultured normal cells; in addition, Con A-pulsed cells treated with anti-theta and complement do not mediate suppression. These studies of Con A-induced suppressor cell activity in normal mice and young NZB/NZW mice contrast with studies of Con A-induced suppressor cell activity in adult NZB/NZW mice. We found that adult NZB/NZW Con A-pulsed cells and supernates obtained from the Con A-pulse cells had vastly decreased suppressor potential; in this case the Con A-pulse cells and supernatant fluids derived from such cells did not suppress PWM-driven IgM synthesis by normal cells. Finally, whereas spleen cells from young and adult NZB/NZW mice differ in their suppressor cell potential, cells from both sources could respond equally to suppressor signals in that Con A-pulsed normal cells or supernates derived from such cells caused equivalent suppression of PWM-driven IgM synthesis by young and adult NZB/NZW cells. These observations allow us to conclude that NZB/NZW mice lose suppressor T-cell activity as they age.


PEDIATRICS ◽  
1980 ◽  
Vol 65 (3) ◽  
pp. 497-500
Author(s):  
Yukiaki Miyagawa ◽  
Kenichi Sugita ◽  
Atsushi Komiyama ◽  
Taro Akabane

Pokeweed mitogen-induced immunoglobulin (Ig) production by cord lymphocytes was studied in vitro by Ig-secreting plaque-forming cell (Ig-PFC) assay. Although adult mononuclear cells generated all of IgM-, IgG-, and IgA-PFC, cord mononuclear cells generated only IgM-PFC when cultured for seven days. The number of cord IgM-PFC was 102 ± 26/104 mononuclear cells, being about one fourth of that of adult IgM-PFC. When cultured for 14 days, cord mononuclear cells formed increased numbers of IgM-PFC in contrast to adult cells, and yielded IgG-PFC as well, indicating delayed Ig production. Cord T cells were much less effective at helping adult B cells to differentiate into Ig-PFC as compared with adult T cells. Substitution of adult T cells for cord T cell markedly improved the response of cord B cells. The present study demonstrates Ig secretion by cord lymphocytes in response to pokeweed mitogen stimulation. The results further indicate that the delayed Ig production by cord lymphocytes is largely due to functional immaturity of the T cells.


Sign in / Sign up

Export Citation Format

Share Document