scholarly journals High-Resolution Satellite Analysis and Model Evaluation of Clouds and Radiation over the Mackenzie Basin Using AVHRR Data

1998 ◽  
Vol 11 (8) ◽  
pp. 1976-1996 ◽  
Author(s):  
Louis Garand ◽  
Serge Nadon

Abstract Both the issues of high-resolution satellite analysis and model evaluation for a region centered on the Arctic Circle (60°–75°N) are addressed. Model cloud fraction, cloud height, and outgoing radiation are compared to corresponding satellite observations using a model-to-satellite approach (calculated radiances from model state). The dataset consists of forecasts run at 15-km resolution up to 30 h and nearly coincident Advanced Very High Resolution Radiometer (AVHRR) imagery during the Beaufort and Arctic Storm Experiment over the Mackenzie Basin for a monthly period in the fall of 1994. A cloud detection algorithm is designed for day and night application using the 11-μ channel of AVHRR along with available information on atmospheric and ground temperatures. The satellite and model estimates of cloud fraction are also compared to observations at 20 ground stations. A significant result of the validation is that the model has a higher frequency of low cloud tops and a lower frequency of midlevel cloud tops than the observations. On a monthly basis, the model 11-μ outgoing brightness temperature (TB) is consequently higher than observed by about 4.4 K at all forecast times, which corresponds to a deficit of 760 m in mean cloud-top height and about 10 W m−2 in outgoing flux at the top of the atmosphere. Possible errors in the parameterization of ice or water cloud emissivity are evaluated but ruled out as the dominant cause for the warm TB bias in the model. Rather, the problem is attributed to low clouds being trapped in the boundary layer, whereas high clouds appear to be reasonably well modeled. The role of thin ice clouds is further evaluated by comparing distributions of observed and modeled 11-μ minus 12-μ TB differences, DIF45 (channel 4 minus channel 5). The relationship between the true height of the clouds and the effective height observed by satellite is modeled from forecast outputs as a function of DIF45. The quality of daily estimates is evaluated from time series at various locations. The time series shows that there was a marked drop in DIF45 during the month, which is attributed to a decrease in the occurrence of cirrus clouds. Finally, the diurnal cycle of TB and cloud fraction is found to be relatively large with average monthly 0600–1800 UTC TB differences of both signs of the order of 4–8 K in broad sectors and cloud fraction differences of 10%–30%. Where low clouds prevail, the cloud fraction tends to decrease at night and TB increases. Overall, model–observation differences are dominated by differences in the vertical distribution of clouds. A reduction of this effect implies a modification of the “preferred” model climatology in terms of its vertical distribution of humidity and cloud water.

2019 ◽  
Vol 19 (21) ◽  
pp. 13535-13546
Author(s):  
Nils Madenach ◽  
Cintia Carbajal Henken ◽  
René Preusker ◽  
Odran Sourdeval ◽  
Jürgen Fischer

Abstract. A total of 14 years (September 2002 to September 2016) of Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) monthly mean cloud data are used to quantify possible changes in the cloud vertical distribution over the tropical Atlantic. For the analysis multiple linear regression techniques are used. For the investigated time period significant linear changes were found in the domain-averaged cloud-top height (CTH) (−178 m per decade), the high-cloud fraction (HCF) (−0.0006 per decade), and the low-cloud amount (0.001 per decade). The interannual variability of the time series (especially CTH and HCF) is highly influenced by the El Niño–Southern Oscillation (ENSO). Separating the time series into two phases, we quantified the linear change associated with the transition from more La Niña-like conditions to a phase with El Niño conditions (Phase 2) and vice versa (Phase 1). The transition from negative to positive ENSO conditions was related to a decrease in total cloud fraction (TCF) (−0.018 per decade; not significant) due to a reduction in the high-cloud amount (−0.024 per decade; significant). Observed anomalies in the mean CTH were found to be mainly caused by changes in HCF rather than by anomalies in the height of cloud tops themselves. Using the large-scale vertical motion ω at 500 hPa (from ERA-Interim ECMWF reanalysis data), the observed anomalies were linked to ENSO-induced changes in the atmospheric large-scale dynamics. The most significant and largest changes were found in regions with strong large-scale upward movements near the Equator. Despite the fact that with passive imagers such as MODIS it is not possible to vertically resolve clouds, this study shows the great potential for large-scale analysis of possible changes in the cloud vertical distribution due to the changing climate by using vertically resolved cloud cover and linking those changes to large-scale dynamics using other observations or model data.


2007 ◽  
Vol 37 (4) ◽  
pp. 1066-1076 ◽  
Author(s):  
M-L. Timmermans ◽  
H. Melling ◽  
L. Rainville

Abstract A 50-day time series of high-resolution temperature in the deepest layers of the Canada Basin in the Arctic Ocean indicates that the deep Canada Basin is a dynamically active environment, not the quiet, stable basin often assumed. Vertical motions at the near-inertial (tidal) frequency have amplitudes of 10– 20 m. These vertical displacements are surprisingly large considering the downward near-inertial internal wave energy flux typically observed in the Canada Basin. In addition to motion in the internal-wave frequency band, the measurements indicate distinctive subinertial temperature fluctuations, possibly due to intrusions of new water masses.


2017 ◽  
Vol 17 (9) ◽  
pp. 5973-5989 ◽  
Author(s):  
Yinghui Liu ◽  
Matthew D. Shupe ◽  
Zhien Wang ◽  
Gerald Mace

Abstract. Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identify the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25–40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid-containing cloud fraction at Eureka than at Barrow; the differences can be attributed to the generally colder and drier conditions at Eureka relative to Barrow.


Ocean Science ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. 997-1016 ◽  
Author(s):  
Irina I. Pipko ◽  
Svetlana P. Pugach ◽  
Igor P. Semiletov ◽  
Leif G. Anderson ◽  
Natalia E. Shakhova ◽  
...  

Abstract. The Arctic is undergoing dramatic changes which cover the entire range of natural processes, from extreme increases in the temperatures of air, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have a profound impact on the carbon dioxide (CO2) flux between the ocean and the atmosphere, and the feedback of this flux to climate. Knowledge of relevant processes in the Arctic seas improves the evaluation and projection of carbon cycle dynamics under current conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic seas (the Barents, Kara, Laptev, and East Siberian seas) during 2006, 2007, and 2009 revealed a general trend in the surface water partial pressure of CO2 (pCO2) distribution, which manifested as an increase in pCO2 values eastward. The existence of this trend was defined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoking a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic seas was carried out in the warm season of 2007; this year was characterized by the next-to-lowest historic sea-ice extent in the Arctic Ocean, on satellite record, to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic seas. The large, open, highly productive water area in the northern Barents Sea enhances atmospheric CO2 uptake. In contrast, the uptake of CO2 was strongly weakened in the outer shelf and slope waters of the East Siberian Arctic seas under the 2007 environmental conditions. The surface seawater appears in equilibrium or slightly supersaturated by CO2 relative to atmosphere because of the increasing influence of river runoff and its input of terrestrial organic matter that mineralizes, in combination with the high surface water temperature during sea-ice-free conditions. This investigation shows the importance of processes that vary on small scales, both in time and space, for estimating the air–sea exchange of CO2. It stresses the need for high-resolution coverage of ocean observations as well as time series. Furthermore, time series must include multi-year studies in the dynamic regions of the Arctic Ocean during these times of environmental change.


2020 ◽  
Vol 12 (22) ◽  
pp. 3738
Author(s):  
Adrià Descals ◽  
Aleixandre Verger ◽  
Gaofei Yin ◽  
Josep Peñuelas

The high spatial resolution and revisit time of Sentinel-2A/B tandem satellites allow a potentially improved retrieval of land surface phenology (LSP). The biome and regional characteristics, however, greatly constrain the design of the LSP algorithms. In the Arctic, such biome-specific characteristics include prolonged periods of snow cover, persistent cloud cover, and shortness of the growing season. Here, we evaluate the feasibility of Sentinel-2 for deriving high-resolution LSP maps of the Arctic. We extracted the timing of the start and end of season (SoS and EoS, respectively) for the years 2019 and 2020 with a simple implementation of the threshold method in Google Earth Engine (GEE). We found a high level of similarity between Sentinel-2 and PhenoCam metrics; the best results were observed with Sentinel-2 enhanced vegetation index (EVI) (root mean squared error (RMSE) and mean error (ME) of 3.0 d and −0.3 d for the SoS, and 6.5 d and −3.8 d for the EoS, respectively), although other vegetation indices presented similar performances. The phenological maps of Sentinel-2 EVI compared well with the same maps extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) in homogeneous landscapes (RMSE and ME of 9.2 d and 2.9 d for the SoS, and 6.4 and −0.9 d for the EoS, respectively). Unreliable LSP estimates were filtered and a quality flag indicator was activated when the Sentinel-2 time series presented a long period (>40 d) of missing data; discontinuities were lower in spring and early summer (9.2%) than in late summer and autumn (39.4%). The Sentinel-2 high-resolution LSP maps and the GEE phenological extraction method will support vegetation monitoring and contribute to improving the representation of Artic vegetation phenology in land surface models.


2017 ◽  
Author(s):  
Yinghui Liu ◽  
Matthew D. Shupe ◽  
Zhien Wang ◽  
Gerald Mace

Abstract. Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface- and space-based active sensors including radar and lidar are ideal to provide this information due to their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compared the annual cycles of cloud property vertical distributions from satellite active sensors and surface-based active sensors at two Arctic atmospheric observation stations, Barrow and Eureka. We used this data to identify the sensors’ respective strengths and limitations and to develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more detailed cloud property vertical distribution from the surface up to 11 km above mean sea level (AMSL) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations see 25–40 % fewer clouds below 0.5 km than that from surface-based observations, and space-based observations also show much less ice cloud and mixed phase cloud, and slightly greater liquid cloud from the surface to 1 km; space-based observations show comparable cloud fraction between 1 km and 2 km AMSL, and greater cloud fraction above 2 km AMSL than that from surface-based observations. The blended product combines the strength of both products to provide a more reliable annual cycle of cloud property vertical distribution annual cycle from the surface to 11 km AMSL. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models.


2017 ◽  
Author(s):  
Irina I. Pipko ◽  
Svetlana P. Pugach ◽  
Igor P. Semiletov ◽  
Leif G. Anderson ◽  
Natalia E. Shakhova ◽  
...  

Abstract. The Arctic now is undergoing dramatic changes, which cover the entire range of natural processes; from extreme increases in the temperatures of air, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have profound impact on the carbon dioxide (CO2) flux between the ocean and the atmosphere, and the feedback of this flux to climate. Knowledge of relevant processes in the Arctic seas improves the evaluation and projection of the carbon cycle dynamics under conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic seas (the Barents, Kara, Laptev, and East Siberian seas) during 2006, 2007, and 2009 revealed a general trend in the surface water pCO2 distribution, which manifested as an increase in pCO2 values eastward. Existence of this trend was determined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoked a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic seas was carried out in the warm season of 2007, which was characterized by the next-to-lowest historic sea ice extent in the Arctic Ocean to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic seas. The large open, highly-productive water area in the northern Barents Sea enhances atmospheric CO2 uptake. In contrast, a growing CO2 evasion occurs in the outer shelf and slope waters of the East Siberian Arctic seas as a result of the increasing influence of river runoff and degradation of terrestrial organic matter, in combination with the high surface-water temperature due to the warm air temperature and decreasing albedo during sea ice free conditions. This investigation shows the importance of processes that vary on small scales, both in time and space, for estimating the air-sea exchange of CO2. It stresses the need for high-resolution coverage of ocean observations as well as time series. Furthermore, time series must include multi-year studies in the dynamic regions of the Arctic Ocean during these times of environmental change.


Sign in / Sign up

Export Citation Format

Share Document