Severe Thunderstorm Internal Structure from Dual-Doppler Radar Measurements

1977 ◽  
Vol 16 (10) ◽  
pp. 1036-1048 ◽  
Author(s):  
Joe R. Eagleman ◽  
Wen C. Lin

Abstract Dual-Doppler radar data were analyzed for three different times during the life cycle of a severe thunderstorm. The thunderstorm developed a double vortex inside as a tornado was generated beneath the cloud.The organized kinematic and precipitation internal structure of the thunderstorm support a theoreticaldouble-vortex thunderstorm model that was developed earlier. The horizontal perturbation and relativewinds, vertical winds, horizontal divergence and vorticity are compared for the three different times ofmeasurement. The measurements and theoretical model provide new explanations of the severe thunderstorm and the relationship of associated tornadoes.

Author(s):  
Rodger A. Brown ◽  
Donald W. Burgess ◽  
John K. Carter ◽  
Leslie R. Lemon ◽  
Dale Sirmans

2018 ◽  
Vol 146 (10) ◽  
pp. 3461-3480 ◽  
Author(s):  
Jason M. Apke ◽  
John R. Mecikalski ◽  
Kristopher Bedka ◽  
Eugene W. McCaul ◽  
Cameron R. Homeyer ◽  
...  

Abstract Rapid acceleration of cloud-top outflow near vigorous storm updrafts can be readily observed in Geostationary Operational Environmental Satellite-14 (GOES-14) super rapid scan (SRS; 60 s) mode data. Conventional wisdom implies that this outflow is related to the intensity of updrafts and the formation of severe weather. However, from an SRS satellite perspective, the pairing of observed expansion and updraft intensity has not been objectively derived and documented. The goal of this study is to relate GOES-14 SRS-derived cloud-top horizontal divergence (CTD) over deep convection to internal updraft characteristics, and document evolution for severe and nonsevere thunderstorms. A new SRS flow derivation system is presented here to estimate storm-scale (<20 km) CTD. This CTD field is coupled with other proxies for storm updraft location and intensity such as overshooting tops (OTs), total lightning flash rates, and three-dimensional flow fields derived from dual-Doppler radar data. Objectively identified OTs with (without) matching CTD maxima were more (less) likely to be associated with radar-observed deep convection and severe weather reports at the ground, suggesting that some OTs were incorrectly identified. The correlation between CTD magnitude, maximum updraft speed, and total lightning was strongly positive for a nonsupercell pulse storm, and weakly positive for a supercell with multiple updraft pulses present. The relationship for the supercell was nonlinear, though larger flash rates are found during periods of larger CTD. Analysis here suggests that combining CTD with OTs and total lightning could have severe weather nowcasting value.


1975 ◽  
Vol 15 (74) ◽  
pp. 357 ◽  
Author(s):  
R Jardine ◽  
S O'Brien ◽  
MV Frew

Data from 14 stocking rate experiments, conducted over the period 1964-72, are used to derive a general relationship between wool production (W, kg sheep-1) and stocking rate (R, sheep ha-1), for the wool-growing areas of Victoria. This relationship is: W = (2.10 + 1.11P - 0.0045 C2) - (0.16 + 0.026 P - 0.00054 C2). R, where P ('productivity', kg sheep-1) and C ('carrying capacity', sheep ha-1) characterise any particular locality in a given year. The relationship is shown to be in accord with a simple theoretical model. In addition, some comparative ewe-wether relationships are presented.


2013 ◽  
Vol 774-776 ◽  
pp. 1721-1724
Author(s):  
Jing Lian Huang ◽  
Xiu Juan Yuan ◽  
Jian Hua Wang

We go deep into the internal structure of the Boolean functions values, and study the relationship of algebraic immunity and algebraic degree of Boolean functions with the Hamming weight with the diffusion included. Then we get some theorems which relevance together algebraic immunity, annihilators and algebraic degree of H Boolean functions by the e-derivative which is a part of the H Boolean function. Besides, we also get the results that algebraic immunity and algebraic degree of Boolean functions can be linked together by the e-derivative of H Boolean functions and so on.


2005 ◽  
Vol 62 (2) ◽  
pp. 351-370 ◽  
Author(s):  
Masayuki Kawashima ◽  
Yasushi Fujiyoshi

Abstract This article presents a detailed analysis of a meso-γ-scale (∼17 km wavelength) shear instability wave along a snowband using a series of dual-Doppler radar data. The wave developed along a low-level shear line that formed under the strain wind field caused by an adjacent mesoscale vortex. The horizontal wind shear across the line was largest at lower levels, and the eddy-component horizontal winds and the retrieved pressure anomaly showed a bottom-intensified structure as well. The resultant vertical pressure gradient force was found to be responsible for the enhancement of alternating updrafts and downdrafts that were subsequently related to the formation of the reflectivity core/gap structure of the wave. Eddy kinetic energy (EKE) budgets of the evolving disturbance were investigated using time series of retrieved kinematic and thermodynamic data. The wave grew at an approximately constant growth rate for about 40 min from its onset. The EKE in this quasi-linear growth period was primarily generated by the horizontal shear that decreased with height. The pressure work was found to remove about two-thirds of this generation in the layer below 1 km, while in the upper layer it was constructive to EKE generation and comparable to the generation of EKE by horizontal shear. These results indicate that the source of EKE was basically located at low levels and the energy was transported upward mainly by the pressure work. After the quasi-linear growth period, horizontal shear generation rapidly decreased and EKE peaked. The buoyancy generation of EKE was small but positive in the quasi-linear growth period, then became negative because of the development of thermally indirect circulations.


Sign in / Sign up

Export Citation Format

Share Document