High-Altitude Diurnal Temperature Changes Due to Ozone Absorption

1953 ◽  
Vol 34 (3) ◽  
pp. 106-110 ◽  
Author(s):  
Francis S. Johnson

The heating effect due to absorption of solar energy by atmospheric ozone was calculated from direct measurements of ozone concentrations and of the ultraviolet spectral intensity of sunlight made during a rocket flight over New Mexico on June 14, 1949. Assuming a constant rate of heat loss throughout the day and night due to infrared emission, and no temperature change from day to day, the diurnal temperature change was found to have maximum value of 5.3 C° at 48 km, falling to 1 C° at 31 km and 70 km.

2005 ◽  
Vol 16 (03) ◽  
pp. 389-392 ◽  
Author(s):  
D. STAUFFER ◽  
H. ARNDT

Can unicellular organisms survive a drastic temperature change, and adapt to it after many generations? In simulations of the Penna model of biological aging, both extinction and adaptation were found for asexual and sexual reproduction as well as for parasex. These model investigations are the basis for the design of evolution experiments with heterotrophic flagellates.


Author(s):  
José A. Martinho Simões ◽  
Manuel Minas da Piedade

Titration calorimetry is a method in which one reactant inside a calorimetric vessel is titrated with another delivered from a burette at a controlled rate. This technique has been adapted to a variety of calorimeters, notably of the isoperibol and heat flow types. The output of a titration calorimetric experiment is usually a plot of the temperature change or the heat flow associated with the reaction or physical interaction under study as a function of time or the amount of titrant added. A primary use of titration calorimetry is the determination of enthalpies of reaction in solution. The obtained results may of course lead to enthalpies of formation of compounds in the standard state by using appropriate thermodynamic cycles and auxiliary data, as described in chapter 8 for reaction-solution calorimetry. Moreover, when reactions are not quantitative, both the equilibrium constant and the enthalpy of reaction can often be determined from a single titration run. This also yields the corresponding ΔrGo and ΔrSo through equations 2.54 and 2.55. Extensive use has been made of titration calorimetry as an analytical tool. These applications, which are outside the scope of this book, have been covered in various reviews. The historical development of titration calorimetry has been addressed by Grime. The technique is credited to have been born in 1913, when Bell and Cowell used an apparatus consisting of a 200 cm3 Dewar vessel, a platinum stirrer, a thermometer graduated to tenths of degrees, and a volumetric burette to determine the end point of the titration of citric acid with ammonia from a plot of the observed temperature change against the volume of ammonia added. The capabilities of titration calorimetry have enormously evolved since then, and the accuracy limits of modern titration calorimeters are comparable to those obtained in conventional isoperibol or heat-flow instruments. The titration procedures described in the literature can be classified as continuous or incremental, depending on the mode of titrant addition. In the first case the titrant is continuously introduced in the reaction vessel at a programmed (not necessarily constant) rate during a run.


Author(s):  
J. Michael Davis ◽  
Gary L. Stevens

As a part of the 2006 ASME Code support being provided by the Materials Reliability Program (MRP) Fatigue Issue Task Group (ITG), and later the Technical Support Committee (TSC), it is desired to develop a solution that establishes the most severe transient for design purposes when environmental fatigue rules are considered. This problem does not have an obvious answer, since the environmental fatigue multiplier (e.g., Fen) expressions depend on the strain rate during a transient. The strain rate in a thermal transient is dependent on the ramp time of the temperature change. Classically, fatigue analysis has been performed by conservatively considering that temperature changes are instantaneous (e.g., ramp time = zero). This results in maximizing the stress response. But, all other things being equal, Fen effects are minimum at instantaneous changes. Previous work performed by the MRP to support 2005 ASME Code activities has investigated how Fen × Usage varies with ramp time and has concluded that Fen × Usage maximizes at a small but definitely non-zero ramp time [1]. The implications of non-zero transient ramp times are that difficulties arise in both specifying ahead of time and qualifying the component for appropriate ramp times and, at the same time, not creating a situation whereby plant operations are required to proceed at a specified pace to remain design compliant. Therefore, it is desirable to have the qualifying fatigue analyses cover all conceivable ramp times such that the operator neither has to: (a) be limited to a minimum pace, nor (b) confirm through observations that the pace is at least as fast as assumed in the design. This paper summarizes qualifying fatigue analyses that have been performed using piping methodologies to define bounding ramp times for a variety of piping geometry and material configurations. The intent of these analyses is to provide the component designer with a set of parametric tools that can be used to easily design components without the need for iterative fatigue analyses to determine the bounding conditions when Fen rules are considered. In addition, the tool developed to perform the parametric analyses is available for future use by the designer should more specific analyses be required.


2019 ◽  
Vol 9 (8) ◽  
pp. 1626 ◽  
Author(s):  
Kurz ◽  
Nawrowski

This paper presents different types of photovoltaic (PV) roof tiles integrating PV cells with roof covering. Selected elastic photovoltaic roof tiles were characterised for their material and electrical characteristics. Practical aspects of using PV roof tiles are discussed, alongside the benefits and drawbacks of their installation on the roof. Thermal resistance, heat transfer coefficient and thermal capacity were identified for elastic PV roof tiles and roof construction built of boards and PV roof tiles, according to valid standards and legal regulations. The resistance–capacity (RC) models of PV roof tiles and roofs are proposed according to the time constants identified for the analysed systems. The energy balance of the studied systems (PV roof tiles alone and the roof as a whole) is presented, based on which temperature changes in the PV cells of the roof tiles working under different environmental conditions were identified. The timing of PV cells’ temperature change obtained by material data and energy balance analyses were compared. The relationship between the temperature change times of PV cells and the thermal resistance and heat capacity of the whole system are demonstrated, alongside environmental parameters.


2008 ◽  
Vol 100 (4) ◽  
pp. 2137-2144 ◽  
Author(s):  
Harald Tichy ◽  
Harald Fischer ◽  
Ewald Gingl

Adaptation controls the gain of the input-function of the cockroach's cold cell during slowly oscillating changes in temperature. When the oscillation period is long, the cold cell improves its gain for the rate of temperature change at the expense of its ability to code instantaneous temperature. When the oscillation period is brief, however, the cold cell reduces this gain and improves its sensitivity for instantaneous temperature. This type of gain control has an important function. When the cockroach ventures from under cover and into moving air, the cold cell is confronted constantly with brief changes in temperature. To be of any use, a limit in the gain for the rate of change seems to be essential. Without such a limit, the cold cell will always indicate temperature change. The decrease in gain for the rate of change involves an increase in gain for instantaneous temperature. Therefore the animal receives precise information about the temperature at which the change occurs and can seek an area of different temperature. If the cockroach ventures back under cover, the rate of change will become slow. In this situation, a high gain improves the ability to signal slow temperature changes. The cockroach receives the early warning of slow fluctuations or even creeping changes in temperature. A comparison of the cold cell's responses with the temperature measured inside of small, cylindrical model objects indicates that coding characteristic rather than passive thermal effects of the structures enclosing the cold cell are responsible for the observed behavior.


Author(s):  
François Gemenne

Massive population displacements are now regularly presented as one of the most dramatic possible consequences of climate change. Current forecasts and projections show that regions that would be affected by such population movements are low-lying islands, coastal and deltaic regions, as well as sub-Saharan Africa. Such estimates, however, are usually based on a 2 ° C temperature rise. In the event of a 4 ° C+ warming, not only is it likely that climate-induced population movements will be more considerable, but also their patterns could be significantly different, as people might react differently to temperature changes that would represent a threat to their very survival. This paper puts forward the hypothesis that a greater temperature change would affect not only the magnitude of the associated population movements, but also—and above all—the characteristics of these movements, and therefore the policy responses that can address them. The paper outlines the policy evolutions that climate-induced displacements in a 4 ° C+ world would require.


1991 ◽  
Vol 18 (12) ◽  
pp. 2253-2256 ◽  
Author(s):  
Thomas R. Karl ◽  
George Kukla ◽  
Vyacheslav N. Razuvayev ◽  
Michael J. Changery ◽  
Robert G. Quayle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document