scholarly journals Measurements of the Vapor Pressure of Supercooled Water Using Infrared Spectroscopy

2008 ◽  
Vol 25 (9) ◽  
pp. 1724-1729 ◽  
Author(s):  
Will Cantrell ◽  
Eli Ochshorn ◽  
Alexander Kostinski ◽  
Keith Bozin

Abstract Measurements are presented of the vapor pressure of supercooled water utilizing infrared spectroscopy, which enables unambiguous verification that the authors’ data correspond to the vapor pressure of liquid water, not a mixture of liquid water and ice. Values of the vapor pressure are in agreement with previous work. Below −13°C, the water film that is monitored to determine coexistence of liquid water (at one temperature) and ice (at another, higher, temperature) de-wets from the hydrophilic silicon prism employed in the authors’ apparatus. The de-wetting transition indicates a quantitative change in the structure of the supercooled liquid.

2008 ◽  
pp. 100731080323068
Author(s):  
Will Cantrell ◽  
Eli Ochshorn ◽  
Alexander Kostinski ◽  
Keith Bozin

2013 ◽  
Vol 94 (6) ◽  
pp. 788-797 ◽  
Author(s):  
Margaret A. LeMone ◽  
Thomas W. Schlatter ◽  
Robert T. Henson

Scientific investigation is supposed to be objective and strictly logical, but this is not always the case: the process that leads to a good conclusion can be messy. This narrative describes interactions among a group of scientists trying to solve a simple problem that had scientific implications. It started with the observation of a cloud exhibiting behavior associated with supercooled water and temperatures around −20°C. However, other aspects of the cloud suggested an altitude where the temperature was around −40°C. For several months following the appearance of the cloud on 23 March 2011, the people involved searched for evidence, formed strong opinions, argued, examined evidence more carefully, changed their minds, and searched for more evidence until they could reach agreement. While they concluded that the cloud was at the higher and colder altitude, evidence for supercooled liquid water at that altitude is not conclusive.


2011 ◽  
Vol 24 (9) ◽  
pp. 2405-2418 ◽  
Author(s):  
Anthony E. Morrison ◽  
Steven T. Siems ◽  
Michael J. Manton

Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 observations from the Terra satellite are used to create a 3-yr climatology of cloud-top phase over a section of the Southern Ocean (south of Australia) and the North Pacific Ocean. The intent is to highlight the extensive presence of supercooled liquid water over the Southern Ocean region, particularly during summer. The phase of such clouds directly affects the absorbed shortwave radiation, which has recently been found to be “poorly simulated in both state-of-the-art reanalysis and coupled global climate models” (Trenberth and Fasullo). The climatology finds that supercooled liquid water is present year-round in the low-altitude clouds across this section of the Southern Ocean. Further, the MODIS cloud phase algorithm identifies very few glaciated cloud tops at temperatures above −20°C, rather inferring a large portion of “uncertain” cloud tops. Between 50° and 60°S during the summer, the albedo effect is compounded by a seasonal reduction in high-level cirrus. This is in direct contrast to the Bering Sea and Gulf of Alaska. Here MODIS finds a higher likelihood of observing warm liquid water clouds during summer and a reduction in the relative frequency of cloud tops within the 0° to −20°C temperature range. As the MODIS cloud phase product has limited ability to confidently identify cloud-top phase between −5° and −25°C, future research should include observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and other space-based sensors to help with the classification within this temperature range. Further, multiregion in situ verification of any remotely sensed observations is vital to further understanding the cloud phase processes.


1998 ◽  
Vol 124 (548) ◽  
pp. 1071-1107 ◽  
Author(s):  
J. Reisner ◽  
R. M. Rasmussen ◽  
R. T. Bruintjes

1986 ◽  
Vol 43 ◽  
pp. 127-138 ◽  
Author(s):  
Geoffrey E. Hill

Abstract This article is a review of work on the subject of seedability of winter orographic clouds for increasing precipitation. Various aspects of seedability are examined in the review, including definitions, distribution of supercooled liquid water, related meteorological factors, relationship of supercooled liquid water to storm stage, factors governing seedability, and the use of seeding criteria. Of particular interest is the conclusion that seedability is greatest when supercooled liquid water concentrations are large and at the same time precipitation rates are small. Such a combination of conditions is favored if the cloud-top temperature is warmer than a limiting value and as the cross-barrier wind speed at mountaintop levels increases. It is also suggested that cloud seeding is best initiated in accordance with direct measurements of supercooled liquid water, precipitation, and cross-barrier wind speed. However, in forecasting these conditions or in continuation of seeding previously initiated, the cloud-top temperature and cross-barrier wind speed are the most useful quantities.


Science ◽  
2020 ◽  
Vol 369 (6510) ◽  
pp. 1490-1492
Author(s):  
Loni Kringle ◽  
Wyatt A. Thornley ◽  
Bruce D. Kay ◽  
Greg A. Kimmel

A fundamental understanding of the unusual properties of water remains elusive because of the limited data at the temperatures and pressures needed to decide among competing theories. We investigated the structural transformations of transiently heated supercooled water films, which evolved for several nanoseconds per pulse during fast laser heating before quenching to 70 kelvin (K). Water’s structure relaxed from its initial configuration to a steady-state configuration before appreciable crystallization. Over the full temperature range investigated, all structural changes were reversible and reproducible by a linear combination of high- and low-temperature structural motifs. The fraction of the liquid with the high-temperature motif decreased rapidly as the temperature decreased from 245 to 190 K, consistent with the predictions of two-state “mixture” models for supercooled water in the supercritical regime.


2018 ◽  
Vol 113 (26) ◽  
pp. 261101 ◽  
Author(s):  
Qi Jin ◽  
Jianming Dai ◽  
Yiwen E ◽  
Xi-Cheng Zhang

Sign in / Sign up

Export Citation Format

Share Document