scholarly journals Freshwater Discharge, Sediment Transport, and Modeled Climate Impacts of the Final Drainage of Glacial Lake Agassiz

2009 ◽  
Vol 22 (8) ◽  
pp. 2161-2180 ◽  
Author(s):  
Garry K. C. Clarke ◽  
Andrew B. G. Bush ◽  
John W. M. Bush

Abstract A cold event at around 8200 calendar years BP and the release, at around that time, of a huge freshwater outburst from ice-dammed glacial Lake Agassiz have lent support to the idea that the flood triggered the cold event. Some suggest that the freshwater addition caused a weakening of the North Atlantic meridional overturning circulation (MOC) thereby reducing the ocean transport of heat to high northern latitudes. Although several modeling efforts lend strength to this claim, the paleoceanographic record is equivocal. The authors’ aim is to use a coupled ocean–atmosphere model to examine the possibility that the two events are causally linked but that MOC reduction was not the main agent of change. It is found that the outburst flood and associated redirection of postflood meltwater drainage to the Labrador Sea, via Hudson Strait, can freshen the North Atlantic, leading to reduced salinity and sea surface temperature, and thus to increased sea ice production at high latitudes. The results point to the possibility that the preflood outflow to the St. Lawrence was extremely turbid and sufficiently dense to become hyperpycnal, whereas the postflood outflow through Hudson Strait had a lower load of suspended sediment and was buoyant.

2000 ◽  
Vol 54 (2) ◽  
pp. 174-181 ◽  
Author(s):  
David W. Leverington ◽  
Jason D. Mann ◽  
James T. Teller

The volume and surface area of glacial Lake Agassiz varied considerably during its 4000-year history. Computer models for seven stages of Lake Agassiz were used to quantify these variations over the lake's early history, between about 11,000 and 9300 14C yr B.P. (ca. 13,000 to 10,300 cal yr B.P.). Just after formation of the Herman strandlines (ca. 11,000 14C yr B.P.), the volume of Lake Agassiz appears to have decreased by >85% as a consequence of the abrupt rerouting of overflow to its eastern outlet from its southward routing into the Mississippi River basin. This drainage released about 9500 km3 of water into the North Atlantic Ocean via the Great Lakes and Gulf of St. Lawrence. Following closure of this eastern routing of overflow, the lake reached its maximum size at about 9400 14C yr B.P. with an area of >260,000 km2 and a volume of >22,700 km3. A second major reduction in volume occurred shortly after that, when its volume decreased >10% following the opening of the Kaiashk outlet to the east into the Great Lakes, and 2500–7000 km3 of water was released into the North Atlantic Ocean. These discharges may have affected ocean circulation and North Atlantic Deep Water production.


2013 ◽  
Vol 26 (8) ◽  
pp. 2651-2667 ◽  
Author(s):  
Paul Spence ◽  
Oleg A. Saenko ◽  
Willem Sijp ◽  
Matthew H. England

Abstract The North Atlantic climate response to the catastrophic drainage of proglacial Lake Agassiz into the Labrador Sea is analyzed with coarse and ocean eddy-permitting versions of a global coupled climate model. The North Atlantic climate response is qualitatively consistent in that a large-scale cooling is simulated regardless of the model resolution or region of freshwater discharge. However, the magnitude and duration of the North Atlantic climate response is found to be sensitive to model resolution and the location of freshwater forcing. In particular, the long-term entrainment of freshwater along the boundary at higher resolution and its gradual, partially eddy-driven escape into the interior leads to low-salinity anomalies persisting in the subpolar Atlantic for decades longer. As a result, the maximum decline of the Atlantic meridional overturning circulation (AMOC) and the ocean meridional heat transport (MHT) is amplified by about a factor of 2 at ocean eddy-permitting resolution, and the recovery is delayed relative to the coarse grid model. This, in turn, increases the long-term cooling in the high-resolution simulations. A decomposition of the MHT response reveals an increased role for transients and the horizontal mean component of MHT at higher resolution. With fixed wind stress curl, it is a stronger response of bottom pressure torque to the freshwater forcing at higher resolution that leads to a larger anomaly of the depth-integrated circulation.


2018 ◽  
Vol 14 (11) ◽  
pp. 1639-1651 ◽  
Author(s):  
Gloria M. Martin-Garcia ◽  
Francisco J. Sierro ◽  
José A. Flores ◽  
Fátima Abrantes

Abstract. The southwestern Iberian margin is highly sensitive to changes in the distribution of North Atlantic currents and to the position of oceanic fronts. In this work, the evolution of oceanographic parameters from 812 to 530 ka (MIS20–MIS14) is studied based on the analysis of planktonic foraminifer assemblages from site IODP-U1385 (37∘34.285′ N, 10∘7.562′ W; 2585 m b.s.l.). By comparing the obtained results with published records from other North Atlantic sites between 41 and 55∘ N, basin-wide paleoceanographic conditions are reconstructed. Variations of assemblages dwelling in different water masses indicate a major change in the general North Atlantic circulation during MIS16, coinciding with the definite establishment of the 100 ky cyclicity associated with the mid-Pleistocene transition. At the surface, this change consisted in the redistribution of water masses, with the subsequent thermal variation, and occurred linked to the northwestward migration of the Arctic Front (AF), and the increase in the North Atlantic Deep Water (NADW) formation with respect to previous glacials. During glacials prior to MIS16, the NADW formation was very weak, which drastically slowed down the surface circulation; the AF was at a southerly position and the North Atlantic Current (NAC) diverted southeastwards, developing steep south–north, and east–west, thermal gradients and blocking the arrival of warm water, with associated moisture, to high latitudes. During MIS16, the increase in the meridional overturning circulation, in combination with the northwestward AF shift, allowed the arrival of the NAC to subpolar latitudes, multiplying the moisture availability for ice-sheet growth, which could have worked as a positive feedback to prolong the glacials towards 100 ky cycles.


2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

<p>There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.</p>


2018 ◽  
Vol 15 (14) ◽  
pp. 4661-4682 ◽  
Author(s):  
Virginie Racapé ◽  
Patricia Zunino ◽  
Herlé Mercier ◽  
Pascale Lherminier ◽  
Laurent Bopp ◽  
...  

Abstract. The North Atlantic Ocean is a major sink region for atmospheric CO2 and contributes to the storage of anthropogenic carbon (Cant). While there is general agreement that the intensity of the meridional overturning circulation (MOC) modulates uptake, transport and storage of Cant in the North Atlantic Subpolar Ocean, processes controlling their recent variability and evolution over the 21st century remain uncertain. This study investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. Its relies on the combined analysis of a multiannual in situ data set and outputs from a global biogeochemical ocean general circulation model (NEMO–PISCES) at 1∕2∘ spatial resolution forced by an atmospheric reanalysis. Despite an underestimation of Cant transport and an overestimation of anthropogenic air–sea CO2 flux in the model, the interannual variability of the regional Cant storage rate and its driving processes were well simulated by the model. Analysis of the multi-decadal simulation revealed that the MOC intensity variability was the major driver of the Cant transport variability at 25 and 36∘ N, but not at OVIDE. At the subpolar OVIDE section, the interannual variability of Cant transport was controlled by the accumulation of Cant in the MOC upper limb. At multi-decadal timescales, long-term changes in the North Atlantic storage rate of Cant were driven by the increase in air–sea fluxes of anthropogenic CO2. North Atlantic Central Water played a key role for storing Cant in the upper layer of the subtropical region and for supplying Cant to Intermediate Water and North Atlantic Deep Water. The transfer of Cant from surface to deep waters occurred mainly north of the OVIDE section. Most of the Cant transferred to the deep ocean was stored in the subpolar region, while the remainder was exported to the subtropical gyre within the lower MOC.


2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2013 ◽  
Vol 9 (5) ◽  
pp. 2135-2151 ◽  
Author(s):  
C. Marzin ◽  
N. Kallel ◽  
M. Kageyama ◽  
J.-C. Duplessy ◽  
P. Braconnot

Abstract. Several paleoclimate records such as from Chinese loess, speleothems or upwelling indicators in marine sediments present large variations of the Asian monsoon system during the last glaciation. Here, we present a new record from the northern Andaman Sea (core MD77-176) which shows the variations of the hydrological cycle of the Bay of Bengal. The high-resolution record of surface water δ18O dominantly reflects salinity changes and displays large millennial-scale oscillations over the period 40 000 to 11 000 yr BP. Their timing and sequence suggests that events of high (resp. low) salinity in the Bay of Bengal, i.e. weak (resp. strong) Indian monsoon, correspond to cold (resp. warm) events in the North Atlantic and Arctic, as documented by the Greenland ice core record. We use the IPSL_CM4 Atmosphere-Ocean coupled General Circulation Model to study the processes that could explain the teleconnection between the Indian monsoon and the North Atlantic climate. We first analyse a numerical experiment in which such a rapid event in the North Atlantic is obtained under glacial conditions by increasing the freshwater flux in the North Atlantic, which results in a reduction of the intensity of the Atlantic meridional overturning circulation. This freshwater hosing results in a weakening of the Indian monsoon rainfall and circulation. The changes in the continental runoff and local hydrological cycle are responsible for an increase in salinity in the Bay of Bengal. This therefore compares favourably with the new sea water δ18O record presented here and the hypothesis of synchronous cold North Atlantic and weak Indian monsoon events. Additional sensitivity experiments are produced with the LMDZ atmospheric model to analyse the teleconnection mechanisms between the North Atlantic and the Indian monsoon. The changes over the tropical Atlantic are shown to be essential in triggering perturbations of the subtropical jet over Africa and Eurasia, that in turn affect the intensity of the Indian monsoon. These relationships are also found to be valid in additional coupled model simulations in which the Atlantic meridional overturning circulation (AMOC) is forced to resume.


2015 ◽  
Vol 12 (17) ◽  
pp. 15223-15244
Author(s):  
M. L. Breeden ◽  
G. A. McKinley

Abstract. The North Atlantic is the most intense region of ocean CO2 uptake. Here, we investigate multidecadal timescale variability of the partial pressure CO2 (pCO2) that is due to the natural carbon cycle using a regional model forced with realistic climate and pre-industrial atmospheric pCO2 for 1948–2009. Large-scale patterns of natural pCO2 variability are primarily associated with basin-averaged sea surface temperature (SST) that, in turn, is composed of two parts: the Atlantic Multidecadal Oscillation (AMO) and a long-term positive SST trend. The North Atlantic Oscillation (NAO) drives a secondary mode of variability. For the primary mode, positive AMO and the SST trend modify pCO2 with different mechanisms and spatial patterns. Warming with the positive AMO increases subpolar gyre pCO2, but there is also a significant reduction of dissolved inorganic carbon (DIC) due primarily to reduced vertical mixing. The net impact of positive AMO is to reduce pCO2 in the subpolar gyre. Through direct impacts on SST, the net impacts of positive AMO is to increase pCO2 in the subtropical gyre. From 1980 to present, long-term SST warming has amplified AMO impacts on pCO2.


Sign in / Sign up

Export Citation Format

Share Document