scholarly journals Improved Global Rainfall Retrieval Using the Special Sensor Microwave Imager (SSM/I)

2010 ◽  
Vol 49 (5) ◽  
pp. 1032-1043 ◽  
Author(s):  
Daniel Vila ◽  
Ralph Ferraro ◽  
Hilawe Semunegus

Abstract Global monthly rainfall estimates have been produced from more than 20 years of measurements from the Defense Meteorological Satellite Program series of Special Sensor Microwave Imager (SSM/I). This is the longest passive microwave dataset available to analyze the seasonal, annual, and interannual rainfall variability on a global scale. The primary algorithm used in this study is an 85-GHz scattering-based algorithm over land, while a combined 85-GHz scattering and 19/37-GHz emission is used over ocean. The land portion of this algorithm is one of the components of the blended Global Precipitation Climatology Project rainfall climatology. Because previous SSM/I processing was performed in real time, only a basic quality control (QC) procedure had been employed to avoid unrealistic values in the input data. A more sophisticated, statistical-based QC procedure on the daily data grids (antenna temperature) was developed to remove unrealistic values not detected in the original database and was employed to reprocess the rainfall product using the current version of the algorithm for the period 1992–2007. Discrepancies associated with the SSM/I-derived monthly rainfall products are characterized through comparisons with various gauge-based and other satellite-derived rainfall estimates. A substantial reduction in biases was observed as a result of this QC scheme. This will yield vastly improved global rainfall datasets.

2017 ◽  
Vol 17 (4) ◽  
pp. 2741-2757 ◽  
Author(s):  
Jie Gong ◽  
Dong L. Wu

Abstract. Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166 GHz channels. It is the first study on frozen particle microphysical properties on a global scale that uses the dual-frequency microwave polarimetric signals.From the ice cloud scenes identified by the 183.3 ± 3 GHz channel brightness temperature (Tb), we find that the scattering by frozen particles is highly polarized, with V–H polarimetric differences (PDs) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166 GHz TBs, as well as the PD at 640 GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow regions (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would easily result in as large as 30 % error in ice water path retrievals. There is a universal bell curve in the PD–TBV relationship, where the PD amplitude peaks at  ∼  10 K for all three channels in the tropics and increases slightly with latitude (2–4 K). Moreover, the 166 GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89 GHz PD is less sensitive than 166 GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors.Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, turbulent mixing within deep convective cores inevitably promotes the random orientation of these particles, a mechanism that works effectively in reducing the PD. The current GMI polarimetric measurements themselves cannot fully disentangle the possible mechanisms.


2017 ◽  
Author(s):  
Christian Massari ◽  
Wade Crow ◽  
Luca Brocca

Abstract. Satellite-based rainfall estimates have great potential value for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of Triple Collocation (TC) to characterize uncertainties associated with rainfall estimates by using three collocated products of this variable. However, TC requires the simultaneous availability of three products with mutually-uncorrelated errors, a requirement that is difficult to satisfy among current global precipitation datasets. In this study, a recently-developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high quality ground rainfall product over the Contiguous United States (CONUS), showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (versus an unknown truth) of the aforementioned products without using a ground benchmark dataset. The analysis is carried out during the period 2012–2015 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high accuracy of the satellite rainfall estimates in Eastern North and South America, South Africa, Southern and Eastern Asia, Eastern Australia as well as Southern Europe and complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the northern hemisphere and the second providing very good performance in the southern hemisphere. The methodology presented in this study can be used to identify the best rainfall product for hydrologic models with sparsely- gauged areas and provide the basis for an optimal integration among different rainfall products.


Author(s):  
Margaret Kimani ◽  
Joost Hoedjes ◽  
Zhongbo Su

Accurate and consistent rainfall observations are vital for climatological studies in support of better planning and decision making. However, estimation of accurate spatial rainfall is limited by sparse rain gauge distributions. Satellite rainfall products can thus potentially play a role in spatial rainfall estimation but their skill and uncertainties need to be under-stood across spatial-time scales. This study aimed at assessing the temporal and spatial performance of seven satellite products (TARCAT (Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT) African Rainfall Climatology And Time series), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Tropical Rainfall Measuring Mission (TRMM-3B43), Climate Prediction Center (CPC) Morphing (CMORPH), the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks- Climate Data Record (PERSIANN-CDR), CPC Merged Analysis of Precipitation (CMAP) and Global Precipitation Climatology Project (GPCP) using gridded (0.05o) rainfall data over East Africa for 15 years(1998-2012). The products’ error distributions were qualitatively compared with large scale horizontal winds (850 mb) and elevation patterns with respect to corresponding rain gauge data for each month during the ‘long’ (March-May) and ‘short’ (October-December) rainfall seasons. For validation only rainfall means extracted from 284 rain gauge stations were used, from which qualitative analysis using continuous statistics of Root Mean Squared Difference, Standard deviations, Correlations, coefficient of determinations (from scatter plots) were used to evaluate the products’ performance. Results revealed rainfall variability dependence on wind flows and modulated by topographic influences. The products’ errors showed seasonality and dependent on rainfall intensity and topography. Single sensor and coarse resolution products showed lowest performance on high ground areas. All the products showed low skills in retrieving rainfall during ‘short’ rainfall season when orographic processes were dominant. CHIRPS, CMORPH and TRMM performed well, with TRMM showing the best performance in both seasons. There is need to reduce products’ errors before applications.


2013 ◽  
Vol 26 (3) ◽  
pp. 772-788 ◽  
Author(s):  
Dongmin Lee ◽  
Lazaros Oreopoulos ◽  
George J. Huffman ◽  
William B. Rossow ◽  
In-Sik Kang

Abstract The authors examine the daytime precipitation characteristics of the International Satellite Cloud Climatology Project (ISCCP) weather states in the extended tropics (35°S–35°N) for a 10-yr period. The main precipitation dataset used is the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis operational product 3B42 dataset, but Global Precipitation Climatology Project daily data are also used for comparison. It is found that the most convectively active ISCCP weather state (WS1), despite an occurrence frequency below 10%, is the most dominant state with regard to surface precipitation, producing both the largest mean precipitation rates when present and the largest percent contribution to the total precipitation of the tropics; yet, even this weather state appears to not precipitate about half the time, although this may be to some extent an artifact of detection and spatiotemporal matching limitations of the precipitation dataset. WS1 exhibits a modest annual cycle of the domain-average precipitation rate, but notable seasonal shifts in its geographic distribution. The precipitation rates of the other weather states appear to be stronger when occurring before or after WS1. The precipitation rates of the various weather states are different between ocean and land, with WS1 producing higher daytime rates on average over ocean than land, likely because of the larger size and more persistent nature of oceanic WS1s. The results of this study, in addition to advancing the understanding of tropical hydrology, can serve as higher-order diagnostics for evaluating the realism of tropical precipitation distributions in large-scale models.


2011 ◽  
Vol 50 (6) ◽  
pp. 1200-1211 ◽  
Author(s):  
Arief Sudradjat ◽  
Nai-Yu Wang ◽  
Kaushik Gopalan ◽  
Ralph R. Ferraro

AbstractA prototype generic, unified land surface classification and screening methodology for Global Precipitation Measurement (GPM)-era microwave land precipitation retrieval algorithms by using ancillary datasets is developed. As an alternative to the current radiometer-determined approach, the new methodology is shown to be promising in improving rain detection by providing better surface-cover-type information. The early prototype new surface screening scheme was applied to the current version of the Goddard profiling algorithm that is used for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (GPROFV6). It has shown improvements in surface-cover-type classification and hence better precipitation retrieval comparisons with TRMM precipitation radar level-2 (L2) (2A25) data and the Global Precipitation Climatology Project (GPCP) version-2.1 (GPCPV2.1) datasets. The new ancillary data approach removes the current dependency of the screening step on relatively different satellite-specific channels and ensures the comparability and continuity of satellite-based precipitation products from different platforms. This is particularly important for advancing the current state of precipitation retrieval over land and for use in merged rainfall products.


2019 ◽  
Vol 36 (4) ◽  
pp. 671-687 ◽  
Author(s):  
Werner E. Cook ◽  
J. Scott Greene

AbstractTo provide an analysis tool for areal rainfall estimates, 1° gridded monthly sea level rainfall estimates have been derived from historical atoll rainfall observations contained in the Pacific Rainfall (PACRAIN) database. The PACRAIN database is a searchable repository of in situ rainfall observations initiated and maintained by the University of Oklahoma and supported by a research grant from the National Oceanic and Atmospheric Administration (NOAA)/Climate Program Office/Ocean Observing and Monitoring. The gridding algorithm employs ordinary kriging, a standard geostatistical technique, and selects for nonnegative estimates and for local estimation neighborhoods yielding minimum kriging variance. This methodology facilitates the selection of fixed-size neighborhoods from available stations beyond simply choosing the closest stations, as it accounts for dependence between estimator stations. The number of stations used for estimation is based on bias and standard error exhibited under cross estimation. A cross validation is conducted, comparing estimated and observed rains, as well as theoretical and observed standard errors for the ordinary kriging estimator. The conditional bias of the kriging estimator and the predictive value of kriging standard errors, with respect to observed standard errors, are discussed. Plots of the gridded rainfall estimates are given for sample El Niño and La Niña cases and standardized differences between the estimates produced here and the merged monthly rainfall estimates published by the Global Precipitation Climatology Project (GPCP) are shown and discussed.


2019 ◽  
Vol 11 (23) ◽  
pp. 2755 ◽  
Author(s):  
Mojtaba Sadeghi ◽  
Ata Akbari Asanjan ◽  
Mohammad Faridzad ◽  
Vesta Afzali Gorooh ◽  
Phu Nguyen ◽  
...  

Providing reliable long-term global precipitation records at high spatial and temporal resolutions is crucial for climatological studies. Satellite-based precipitation estimations are a promising alternative to rain gauges for providing homogeneous precipitation information. Most satellite-based precipitation products suffer from short-term data records, which make them unsuitable for various climatological and hydrological applications. However, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) provides more than 35 years of precipitation records at 0.25° × 0.25° spatial and daily temporal resolutions. The PERSIANN-CDR algorithm uses monthly Global Precipitation Climatology Project (GPCP) data, which has been recently updated to version 2.3, for reducing the biases in the output of the PERSIANN model. In this study, we constructed PERSIANN-CDR using the newest version of GPCP (V2.3). We compared the PERSIANN-CDR dataset that is constructed using GPCP V2.3 (from here on referred to as PERSIANN-CDR V2.3) with the PERSIANN-CDR constructed using GPCP V2.2 (from here on PERSIANN-CDR V2.2), at monthly and daily scales for the period from 2009 to 2013. First, we discuss the changes between PERSIANN-CDR V2.3 and V2.2 over the land and ocean. Second, we evaluate the improvements in PERSIANN-CDR V2.3 with respect to the Climate Prediction Center (CPC) unified gauge-based analysis, a gauged-based reference, and Tropical Rainfall Measuring Mission (TRMM 3B42 V7), a commonly used satellite reference, at monthly and daily scales. The results show noticeable differences between PERSIANN-CDR V2.3 and V2.2 over oceans between 40° and 60° latitude in both the northern and southern hemispheres. Monthly and daily scale comparisons of the two bias-adjusted versions of PERSIANN-CDR with the above-mentioned references emphasize that PERSIANN-CDR V2.3 has improved mostly over the global land area, especially over the CONUS and Australia. The updated PERSIANN-CDR V2.3 data has replaced V2.2 data for the 2009–2013 period on CHRS data portal and NOAA National Centers for Environmental Information (NCEI) Program.


Sign in / Sign up

Export Citation Format

Share Document