scholarly journals Uncertainty Assessments of Satellite Derived Rainfall Products

Author(s):  
Margaret Kimani ◽  
Joost Hoedjes ◽  
Zhongbo Su

Accurate and consistent rainfall observations are vital for climatological studies in support of better planning and decision making. However, estimation of accurate spatial rainfall is limited by sparse rain gauge distributions. Satellite rainfall products can thus potentially play a role in spatial rainfall estimation but their skill and uncertainties need to be under-stood across spatial-time scales. This study aimed at assessing the temporal and spatial performance of seven satellite products (TARCAT (Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT) African Rainfall Climatology And Time series), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Tropical Rainfall Measuring Mission (TRMM-3B43), Climate Prediction Center (CPC) Morphing (CMORPH), the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks- Climate Data Record (PERSIANN-CDR), CPC Merged Analysis of Precipitation (CMAP) and Global Precipitation Climatology Project (GPCP) using gridded (0.05o) rainfall data over East Africa for 15 years(1998-2012). The products’ error distributions were qualitatively compared with large scale horizontal winds (850 mb) and elevation patterns with respect to corresponding rain gauge data for each month during the ‘long’ (March-May) and ‘short’ (October-December) rainfall seasons. For validation only rainfall means extracted from 284 rain gauge stations were used, from which qualitative analysis using continuous statistics of Root Mean Squared Difference, Standard deviations, Correlations, coefficient of determinations (from scatter plots) were used to evaluate the products’ performance. Results revealed rainfall variability dependence on wind flows and modulated by topographic influences. The products’ errors showed seasonality and dependent on rainfall intensity and topography. Single sensor and coarse resolution products showed lowest performance on high ground areas. All the products showed low skills in retrieving rainfall during ‘short’ rainfall season when orographic processes were dominant. CHIRPS, CMORPH and TRMM performed well, with TRMM showing the best performance in both seasons. There is need to reduce products’ errors before applications.

2019 ◽  
Vol 11 (23) ◽  
pp. 2755 ◽  
Author(s):  
Mojtaba Sadeghi ◽  
Ata Akbari Asanjan ◽  
Mohammad Faridzad ◽  
Vesta Afzali Gorooh ◽  
Phu Nguyen ◽  
...  

Providing reliable long-term global precipitation records at high spatial and temporal resolutions is crucial for climatological studies. Satellite-based precipitation estimations are a promising alternative to rain gauges for providing homogeneous precipitation information. Most satellite-based precipitation products suffer from short-term data records, which make them unsuitable for various climatological and hydrological applications. However, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) provides more than 35 years of precipitation records at 0.25° × 0.25° spatial and daily temporal resolutions. The PERSIANN-CDR algorithm uses monthly Global Precipitation Climatology Project (GPCP) data, which has been recently updated to version 2.3, for reducing the biases in the output of the PERSIANN model. In this study, we constructed PERSIANN-CDR using the newest version of GPCP (V2.3). We compared the PERSIANN-CDR dataset that is constructed using GPCP V2.3 (from here on referred to as PERSIANN-CDR V2.3) with the PERSIANN-CDR constructed using GPCP V2.2 (from here on PERSIANN-CDR V2.2), at monthly and daily scales for the period from 2009 to 2013. First, we discuss the changes between PERSIANN-CDR V2.3 and V2.2 over the land and ocean. Second, we evaluate the improvements in PERSIANN-CDR V2.3 with respect to the Climate Prediction Center (CPC) unified gauge-based analysis, a gauged-based reference, and Tropical Rainfall Measuring Mission (TRMM 3B42 V7), a commonly used satellite reference, at monthly and daily scales. The results show noticeable differences between PERSIANN-CDR V2.3 and V2.2 over oceans between 40° and 60° latitude in both the northern and southern hemispheres. Monthly and daily scale comparisons of the two bias-adjusted versions of PERSIANN-CDR with the above-mentioned references emphasize that PERSIANN-CDR V2.3 has improved mostly over the global land area, especially over the CONUS and Australia. The updated PERSIANN-CDR V2.3 data has replaced V2.2 data for the 2009–2013 period on CHRS data portal and NOAA National Centers for Environmental Information (NCEI) Program.


2015 ◽  
Vol 16 (2) ◽  
pp. 631-651 ◽  
Author(s):  
Sapna Rana ◽  
James McGregor ◽  
James Renwick

Abstract This paper evaluates the seasonal (winter, premonsoon, monsoon, and postmonsoon) performance of seven precipitation products from three different sources: gridded station data, satellite-derived data, and reanalyses products over the Indian subcontinent for a period of 10 years (1997/98–2006/07). The evaluated precipitation products are the Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE), the Climate Prediction Center unified (CPC-uni), the Global Precipitation Climatology Project (GPCP), the Tropical Rainfall Measuring Mission (TRMM) post-real-time research products (3B42-V6 and 3B42-V7), the Climate Forecast System Reanalysis (CFSR), and the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim). Several verification measures are employed to assess the accuracy of the data. All datasets capture the large-scale characteristics of the seasonal mean precipitation distribution, albeit with pronounced seasonal and/or regional differences. Compared to APHRODITE, the gauge-only (CPC-uni) and the satellite-derived precipitation products (GPCP, 3B42-V6, and 3B42-V7) capture the summer monsoon rainfall variability better than CFSR and ERA-Interim. Similar conclusions are drawn for the postmonsoon season, with the exception of 3B42-V7, which underestimates postmonsoon precipitation. Over mountainous regions, 3B42-V7 shows an appreciable improvement over 3B42-V6 and other gauge-based precipitation products. Significantly large biases/errors occur during the winter months, which are likely related to the uncertainty in observations that artificially inflate the existing error in reanalyses and satellite retrievals.


2016 ◽  
Vol 29 (21) ◽  
pp. 7773-7795 ◽  
Author(s):  
Maria Gehne ◽  
Thomas M. Hamill ◽  
George N. Kiladis ◽  
Kevin E. Trenberth

Abstract Characteristics of precipitation estimates for rate and amount from three global high-resolution precipitation products (HRPPs), four global climate data records (CDRs), and four reanalyses are compared. All datasets considered have at least daily temporal resolution. Estimates of global precipitation differ widely from one product to the next, with some differences likely due to differing goals in producing the estimates. HRPPs are intended to produce the best snapshot of the precipitation estimate locally. CDRs of precipitation emphasize homogeneity over instantaneous accuracy. Precipitation estimates from global reanalyses are dynamically consistent with the large-scale circulation but tend to compare poorly to rain gauge estimates since they are forecast by the reanalysis system and precipitation is not assimilated. Regional differences among the estimates in the means and variances are as large as the means and variances, respectively. Even with similar monthly totals, precipitation rates vary significantly among the estimates. Temporal correlations among datasets are large at annual and daily time scales, suggesting that compensating bias errors at annual and random errors at daily time scales dominate the differences. However, the signal-to-noise ratio at intermediate (monthly) time scales can be large enough to result in high correlations overall. It is shown that differences on annual time scales and continental regions are around 0.8 mm day−1, which corresponds to 23 W m−2. These wide variations in the estimates, even for global averages, highlight the need for better constrained precipitation products in the future.


2021 ◽  
Author(s):  
George J. Huffman ◽  
Ali Behrangi ◽  
Robert F. Adler ◽  
David T. Bolvin ◽  
Eric J. Nelkin ◽  
...  

<p>The Global Precipitation Climatology Project (GPCP) is currently providing a next-generation Version 3.1 Monthly product, which covers the period 1983-2019.  This modernized product includes higher spatial resolution (0.5°x0.5°); a wider coverage (60°N-S) by geosynchronous IR estimates, now based on the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) algorithm, with monthly recalibration using Goddard Profiling (GPROF) algorithm retrievals from selected passive microwave sensors; and improved calibrations of Television-Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) and Advanced Infrared Sounder (AIRS) precipitation, used outside 60ºN-S.  The merged satellite estimate is adjusted to the Tropical Combined Climatology (TCC) at lower latitudes, and the Merged CloudSat, TRMM, and GPM (MCTG) climatology at higher latitudes.  Finally, V3.1 provides a merger of the satellite-only estimates with the Global Precipitation Climatology Centre (GPCC) monthly 1°x1° gauge analyses. </p><p>As well, the GPCP team is advancing a companion global Version 3 Daily product, in which the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) Final Run V06 estimates are used where available (initially restricted to 60°N-S), and rescaled TOVS/AIRS data in high-latitude areas, all calibrated to the GPCP V3.1 Monthly estimate.  Since IMERG currently extends back to June 2000, daily PERSIANN-CDR data will be used for the period January 1983–May 2000 to complete the record.</p><p>This presentation will provide early results for, and the latest status of, the Monthly and Daily GPCP products as a function of time and region.  Key points include examining homogeneity over time and across time and space boundaries between input datasets.  One key activity is to refine the V3 products while we continue to produce the Version 2 GPCP products for on-going use.</p>


2013 ◽  
Vol 26 (3) ◽  
pp. 772-788 ◽  
Author(s):  
Dongmin Lee ◽  
Lazaros Oreopoulos ◽  
George J. Huffman ◽  
William B. Rossow ◽  
In-Sik Kang

Abstract The authors examine the daytime precipitation characteristics of the International Satellite Cloud Climatology Project (ISCCP) weather states in the extended tropics (35°S–35°N) for a 10-yr period. The main precipitation dataset used is the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis operational product 3B42 dataset, but Global Precipitation Climatology Project daily data are also used for comparison. It is found that the most convectively active ISCCP weather state (WS1), despite an occurrence frequency below 10%, is the most dominant state with regard to surface precipitation, producing both the largest mean precipitation rates when present and the largest percent contribution to the total precipitation of the tropics; yet, even this weather state appears to not precipitate about half the time, although this may be to some extent an artifact of detection and spatiotemporal matching limitations of the precipitation dataset. WS1 exhibits a modest annual cycle of the domain-average precipitation rate, but notable seasonal shifts in its geographic distribution. The precipitation rates of the other weather states appear to be stronger when occurring before or after WS1. The precipitation rates of the various weather states are different between ocean and land, with WS1 producing higher daytime rates on average over ocean than land, likely because of the larger size and more persistent nature of oceanic WS1s. The results of this study, in addition to advancing the understanding of tropical hydrology, can serve as higher-order diagnostics for evaluating the realism of tropical precipitation distributions in large-scale models.


2012 ◽  
Vol 9 (8) ◽  
pp. 9503-9532 ◽  
Author(s):  
Y. C. Gao ◽  
M. F. Liu

Abstract. High-resolution satellite precipitation products are very attractive for studying the hydrologic processes in mountainous areas where rain gauges are generally sparse. Three high-resolution satellite precipitation products are evaluated using gauge measurements over different climate zones of the Tibetan Plateau (TP) within a 6 yr period from 2004 to 2009. The three satellite-based precipitation datasets are: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), Climate Prediction Center Morphing Technique (CMOPRH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN). TMPA and CMORPH, with higher correlation coefficients and lower root mean square errors (RMSEs), show overall better performance than PERSIANN. TMPA has the lowest biases among the three precipitation datasets, which is likely due to the correction process against monthly gauge observations from global precipitation climatology project (GPCP). The three products show better agreement with gauge measurements over humid regions than that over arid regions where correlation coefficients are less than 0.5. Moreover, the three precipitation products generally tend to overestimate light rainfall (0–10 mm) and underestimate moderate and heavy rainfall (>10 mm). PERSIANN produces obvious underestimation at low elevations and overestimation at high elevations. CMORPH and TMPA do not present strong bias-elevation relationships in most regions of TP.


2011 ◽  
Vol 24 (24) ◽  
pp. 6307-6321 ◽  
Author(s):  
Sun Wong ◽  
Eric J. Fetzer ◽  
Brian H. Kahn ◽  
Baijun Tian ◽  
Bjorn H. Lambrigtsen ◽  
...  

Abstract The authors investigate if atmospheric water vapor from remote sensing retrievals obtained from the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit (AIRS) and the water vapor budget from the NASA Goddard Space Flight Center (GSFC) Modern Era Retrospective-analysis for Research and Applications (MERRA) are physically consistent with independently synthesized precipitation data from the Tropical Rainfall Measuring Mission (TRMM) or the Global Precipitation Climatology Project (GPCP) and evaporation data from the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF). The atmospheric total water vapor sink (Σ) is estimated from AIRS water vapor retrievals with MERRA winds (AIRS–MERRA Σ) as well as directly from the MERRA water vapor budget (MERRA–MERRA Σ). The global geographical distributions as well as the regional wavelet amplitude spectra of Σ are then compared with those of TRMM or GPCP precipitation minus GSSTF surface evaporation (TRMM–GSSTF and GPCP–GSSTF P − E, respectively). The AIRS–MERRA and MERRA–MERRA Σs reproduce the main large-scale patterns of global P − E, including the locations and variations of the ITCZ, summertime monsoons, and midlatitude storm tracks in both hemispheres. The spectra of regional temporal variations in Σ are generally consistent with those of observed P − E, including the annual and semiannual cycles, and intraseasonal variations. Both AIRS–MERRA and MERRA–MERRA Σs have smaller amplitudes for the intraseasonal variations over the tropical oceans. The MERRA P − E has spectra similar to that of MERRA–MERRA Σ in most of the regions except in tropical Africa. The averaged TRMM–GSSTF and GPCP–GSSTF P − E over the ocean are more negative compared to the AIRS–MERRA, MERRA–MERRA Σs, and MERRA P − E.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mojtaba Sadeghi ◽  
Phu Nguyen ◽  
Matin Rahnamay Naeini ◽  
Kuolin Hsu ◽  
Dan Braithwaite ◽  
...  

AbstractAccurate long-term global precipitation estimates, especially for heavy precipitation rates, at fine spatial and temporal resolutions is vital for a wide variety of climatological studies. Most of the available operational precipitation estimation datasets provide either high spatial resolution with short-term duration estimates or lower spatial resolution with long-term duration estimates. Furthermore, previous research has stressed that most of the available satellite-based precipitation products show poor performance for capturing extreme events at high temporal resolution. Therefore, there is a need for a precipitation product that reliably detects heavy precipitation rates with fine spatiotemporal resolution and a longer period of record. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR) is designed to address these limitations. This dataset provides precipitation estimates at 0.04° spatial and 3-hourly temporal resolutions from 1983 to present over the global domain of 60°S to 60°N. Evaluations of PERSIANN-CCS-CDR and PERSIANN-CDR against gauge and radar observations show the better performance of PERSIANN-CCS-CDR in representing the spatiotemporal resolution, magnitude, and spatial distribution patterns of precipitation, especially for extreme events.


Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 103
Author(s):  
Kingsley N. Ogbu ◽  
Nina Rholan Hounguè ◽  
Imoleayo E. Gbode ◽  
Bernhard Tischbein

Understanding the variability of rainfall is important for sustaining rain-dependent agriculture and driving the local economy of Nigeria. Paucity and inadequate rain gauge network across Nigeria has made satellite-based rainfall products (SRPs), which offer a complete spatial and consistent temporal coverage, a better alternative. However, the accuracy of these products must be ascertained before use in water resource developments and planning. In this study, the performances of Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), Precipitation estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), and Tropical Applications of Meteorology using SATellite data and ground-based observations (TAMSAT), were evaluated to investigate their ability to reproduce long term (1983–2013) observed rainfall characteristics derived from twenty-four (24) gauges in Nigeria. Results show that all products performed well in terms of capturing the observed annual cycle and spatial trends in all selected stations. Statistical evaluation of the SRPs performance show that CHIRPS agree more with observations in all climatic zones by reproducing the local rainfall characteristics. The performance of PERSIANN and TAMSAT, however, varies with season and across the climatic zones. Findings from this study highlight the benefits of using SRPs to augment or fill gaps in the distribution of local rainfall data, which is critical for water resources planning, agricultural development, and policy making.


2014 ◽  
Vol 15 (5) ◽  
pp. 1778-1793 ◽  
Author(s):  
Yiwen Mei ◽  
Emmanouil N. Anagnostou ◽  
Efthymios I. Nikolopoulos ◽  
Marco Borga

Abstract Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards such as flash floods, shallow landslides, and debris flows, triggered by heavy precipitation events (HPEs). In situ observations over mountainous areas are limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for hydrological applications. In this study, four widely used satellite-based precipitation products [Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42, version 7 (3B42-V7), and in near–real time (3B42-RT); Climate Prediction Center (CPC) morphing technique (CMORPH); and Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)] are evaluated with respect to their performance in capturing the properties of HPEs over different basin scales. Evaluation is carried out over the upper Adige River basin (eastern Italian Alps) for an 8-yr period (2003–10). Basin-averaged rainfall derived from a dense rain gauge network in the region is used as a reference. Satellite precipitation error analysis is performed for warm (May–August) and cold (September–December) season months as well as for different quantile ranges of basin-averaged precipitation accumulations. Three error metrics and a score system are introduced to quantify the performances of the various satellite products. Overall, no single precipitation product can be considered ideal for detecting and quantifying HPE. Results show better consistency between gauges and the two 3B42 products, particularly during warm season months that are associated with high-intensity convective events. All satellite products are shown to have a magnitude-dependent error ranging from overestimation at low precipitation regimes to underestimation at high precipitation accumulations; this effect is more pronounced in the CMORPH and PERSIANN products.


Sign in / Sign up

Export Citation Format

Share Document