scholarly journals On the Relationship between African Easterly Waves and the African Easterly Jet

2009 ◽  
Vol 66 (8) ◽  
pp. 2303-2316 ◽  
Author(s):  
Stephanie Leroux ◽  
Nicholas M. J. Hall

Abstract This idealized modeling study investigates how convectively triggered African easterly waves (AEWs) are influenced by the intraseasonal variability of the African easterly jet (AEJ). A set of 10-day averaged zonally varying basic states is constructed with the NCEP-2 reanalysis (1979–2006). A primitive equation model is used to simulate linear AEWs on each of these basic states using the same idealized convective heating localized over the Darfur mountains as an initial trigger. It is shown that the transient response depends strongly on the basic state. With the same trigger, many configurations of the AEJ fail to produce a wave disturbance, while others produce strong easterly wave structures. Necessary conditions for the development of strong waves can be characterized by a strong jet, a strong vertical shear, or a strong and extended potential vorticity reversal. In strong-wave cases the jet is extended to the south and west, and the jet core is aligned with the maximum of surface westerlies, maximizing the vertical shear. The pattern that is optimal for generating easterly waves also closely resembles the dominant mode of variation of the AEJ revealed by an empirical orthogonal function (EOF) analysis of the set of basic states.

2011 ◽  
Vol 24 (20) ◽  
pp. 5378-5396 ◽  
Author(s):  
Stephanie Leroux ◽  
Nicholas M. J. Hall ◽  
George N. Kiladis

Abstract A dynamical model is constructed of the northern summertime global circulation, maintained by empirically derived forcing, based on the same dynamical code that has recently been used to study African easterly waves (AEWs) as convectively triggered perturbations (Thorncroft et al.; Leroux and Hall). In the configuration used here, the model faithfully simulates the observed mean distributions of jets and transient disturbances, and explicitly represents the interactions between them. This simple GCM is used to investigate the origin and intraseasonal intermittency of AEWs in an artificially dry (no convection) context. A long integration of the model produces a summertime climatology that includes a realistic African easterly jet and westward-propagating 3–5-day disturbances over West Africa. These simulated waves display intraseasonal intermittency as the observed AEWs also do. Further experiments designed to discern the source of this intermittency in the model show that the simulated waves are mainly triggered by dynamical precursors coming from the North Atlantic storm track. The model is at least as sensitive to this remote influence as it is to local triggering by convective heating.


2013 ◽  
Vol 26 (18) ◽  
pp. 6750-6774 ◽  
Author(s):  
Man-Li C. Wu ◽  
Oreste Reale ◽  
Siegfried D. Schubert

Abstract This study shows that the African easterly wave (AEW) activity over the African monsoon region and the northern tropical Atlantic can be divided in two distinct temporal bands with time scales of 2.5–6 and 6–9 days. The results are based on a two-dimensional ensemble empirical mode decomposition (2D-EEMD) of the Modern-Era Retrospective Analysis for Research and Applications (MERRA). The novel result of this investigation is that the 6–9-day waves appear to be located predominantly to the north of the African easterly jet (AEJ), originate at the jet level, and are different in scale and structure from the well-known low-level 2.5–6-day waves that develop baroclinically on the poleward flank of the AEJ. Moreover, they appear to interact with midlatitude eastward-propagating disturbances, with the strongest interaction taking place at the latitudes where the core of the Atlantic high pressure system is located. Composite analyses applied to the mode decomposition indicate that the interaction of the 6–9-day waves with midlatitude systems is characterized by enhanced southerly (northerly) flow from (toward) the tropics. This finding agrees with independent studies focused on European floods, which have noted enhanced moist transport from the ITCZ toward the Mediterranean region on time scales of about a week as important precursors of extreme precipitation.


2019 ◽  
Vol 76 (11) ◽  
pp. 3351-3365 ◽  
Author(s):  
Dustin F. P. Grogan ◽  
Terrence R. Nathan ◽  
Shu-Hua Chen

Abstract Analytical and numerical analyses are used to examine how structural changes to the African easterly jet (AEJ) mediate the effects of Saharan mineral dust aerosols on the linear dynamics of African easterly waves (AEWs). An analytical expression for the generation of eddy available potential energy (APE) is derived that exposes how the AEJ and dust combine to affect the energetics of the AEWs. The expression is also used to interpret the numerical results, which are obtained by radiatively coupling a simplified version of the Weather Research and Forecasting Model to a conservation equation for dust. The WRF-Dust model is used to conduct linear simulations based on five observationally consistent zonal-mean AEJs: a reference AEJ and four other AEJs that are obtained by perturbing the maximum meridional and vertical shear. For a dust distribution consistent with summertime observations over North Africa, the numerical simulations show the following: (i) Irrespective of the AEJ structure or the zonal scale of the AEWs, the dust increases the growth rates of the AEWs. (ii) The growth rates of the AEWs are optimized when the ratio of baroclinic to barotropic energy conversions is largest. (iii) When the energy conversions are sufficiently large, the zonal scale of the fastest-growing AEW shortens. The numerical results confirm the analytical analysis, which shows that the dust effects, which are modulated by the Doppler-shifted frequency, are strongest north of the AEJ axis, a region where the dust augments the preexisting meridional temperature gradient.


2020 ◽  
Vol 33 (11) ◽  
pp. 4513-4536
Author(s):  
Cheng Zheng ◽  
Edmund Kar-Man Chang

AbstractThe Madden–Julian oscillation (MJO) is the dominant mode of tropical intraseasonal variability. Many studies have found that the MJO, which acts as a tropical heating source, can excite Rossby waves that propagate into the midlatitude and modulate midlatitude circulation. The extratropical mean flow can modulate the MJO extratropical response. Rossby waves can grow or decay in different extratropical background flows, and the propagation of the Rossby waves also varies as the background flow acts as a waveguide. In this study, how extratropical mean flow modulates the MJO extratropical response is explored by using a nonlinear baroclinic primitive equation model. MJO-associated heating, as an external forcing of the model, is imposed into scenarios with different extratropical background flows. Different background flow modulates the generation and advection of the vorticity anomalies induced by the MJO, which determines the initial location and strength of the Rossby waves. The midlatitude waveguides can be different as the background flow changes. As the propagation of Rossby waves follows the waveguides, the background flow determines whether the Rossby waves are trapped in the Pacific Ocean region or can propagate to the north and to the east into North America. The experiments also show that the anomalies associated with the Rossby waves can extract energy from the midlatitude jet over the jet exit region and the southern flank of the jet. This further modulates the strength, location, and duration of the MJO extratropical response.


2005 ◽  
Vol 133 (5) ◽  
pp. 1311-1327 ◽  
Author(s):  
Jen-Shan Hsieh ◽  
Kerry H. Cook

Abstract The relationship between African easterly waves and the background climatology in which they form is studied using a regional climate model. The surface and lateral boundary conditions in the model are manipulated to modify the background climatology, especially the African easterly jet and the ITCZ, and the behavior of the waves in these different settings is evaluated. Three climate simulations are presented, with monthly mean lateral and surface boundary conditions. One has a strong jet and a strong ITCZ, the second has a strong jet and a weak ITCZ, and the third has a weak jet and a strong ITCZ. In these simulations, the presence of wave activity is more closely associated with the concentration of the ITCZ than the strength of the African easterly jet. In particular, the simulation with a strong jet accompanied by a weak ITCZ does not produce significant wave activity, but a weak jet with a strong ITCZ has realistic wave disturbances. Both the Charney–Stern and the Fjörtoft necessary conditions are satisfied in all three simulations, suggesting that combined barotropic and baroclinic instability contributes to the generation of waves. Near the origin of the waves, meridional gradient reversals of isentropic potential vorticity result from potential vorticity anomalies generated by convective heating within the ITCZ, implying that the unstable zonal flow may be caused by cumulus convection within the ITCZ and not by shear instability associated with the jet. Two additional simulations with 1988 lateral boundary conditions demonstrate that 3–5-day wave disturbances can be generated in the absence of the African easterly jet, but with unrealistically small wavelengths. These results suggest that African easterly waves are initiated by cumulus convection within the ITCZ, and not by barotropic instability associated with the jet.


2003 ◽  
Vol 84 (3) ◽  
pp. 337-352 ◽  
Author(s):  
C. D. Thorncroft ◽  
D. J. Parker ◽  
R. R. Burton ◽  
M. Diop ◽  
J. H. Ayers ◽  
...  

2019 ◽  
Vol 147 (5) ◽  
pp. 1679-1698
Author(s):  
Travis J. Elless ◽  
Ryan D. Torn

Abstract Although there have been numerous studies documenting the processes/environments that lead to the intensification of African easterly waves (AEWs), only a few of these studies investigated the effect of those processes or the environment on the predictability of AEWs. Here, the large-scale modulation of AEW intensity predictability is evaluated using the 51-member ECMWF ensemble prediction system (EPS) during an active AEW period (July–September 2011–13). Forecasts are stratified based on the 72-h AEW intensity standard deviation (SD) to evaluate hypotheses for how different processes contribute to large forecast SD. While large and small SD forecasts are associated with similar baroclinic and barotropic energy conversions, forecasts with large SD are characterized by higher relative humidity values downstream of the AEW trough. These areas of higher humidity are also associated with higher precipitation and precipitation SD, suggesting that uncertainty associated with diabatic processes could be linked with large AEW intensity SD. Although water vapor is a strong function of longitude and phase of convectively coupled equatorial waves, the cases with large and small SD are characterized by similar longitude and wave phase, suggesting that AEWs occurring in certain locations or convectively coupled equatorial wave phases are not more or less predictable.


2010 ◽  
Vol 67 (1) ◽  
pp. 26-43 ◽  
Author(s):  
Jonathan Zawislak ◽  
Edward J. Zipser

Abstract The African Monsoon Multidisciplinary Analyses (AMMA) experiment and its downstream NASA extension, NAMMA, provide an unprecedented detailed look at the vertical structure of consecutive African easterly waves. During August and September 2006, seven easterly waves passed through the NAMMA domain: two waves developed into Tropical Cyclones Debby and Helene, two waves did not develop, and three waves were questionable in their role in the development of Ernesto, Florence, and Gordon. NCEP Global Data Assimilation System (GDAS) analyses are used to describe the track of both the vorticity maxima and midlevel wave trough associated with each of the seven easterly waves. Dropsonde data from NAMMA research flights are used to describe the observed wind structure and as a tool to evaluate the accuracy of the GDAS to resolve the structure of the wave. Finally, satellite data are used to identify the relationship between convection and the organization of the wind structure. Results support a necessary distinction between the large-scale easterly wave trough and smaller-scale vorticity centers within the wave. An important wave-to-wave variability is observed: for NAMMA waves, those waves that have a characteristically high-amplitude wave trough and well-defined low-level circulations (well organized) may contain less rainfall, do not necessarily develop, and are well resolved in the analysis, whereas low-amplitude (weakly organized) NAMMA waves may have stronger vorticity centers and large persistent raining areas and may be more likely to develop, but are not well resolved in the analysis.


2021 ◽  
Vol 2 (2) ◽  
pp. 311-329
Author(s):  
Joshua White ◽  
Anantha Aiyyer

Abstract. We examine the group dynamic of African easterly waves (AEWs) generated in a realistic, spatially non-homogeneous African easterly jet (AEJ) using an idealized general circulation model. Our objective is to investigate whether the limited zonal extent of the AEJ is an impediment to AEW development. We construct a series of basic states using global reanalysis fields and initialize waves via transient heating over West Africa. The dominant response is a localized, near-stationary wave packet that disperses upstream and downstream. The inclusion of a crude representation of boundary layer damping stabilizes the waves in most cases, consistent with other studies in the past. In some basic states, however, exponential growth occurs even in the presence of damping. This shows that AEWs can occasionally emerge spontaneously. The key result is that, whether triggered by an external forcing or generated internally, the wave packet can remain within the AEJ for multiple wave periods instead of being swept away. Drawing from other studies, this also suggests that even the damped waves can grow if coupled with additional sources of energy such as moist convection and dust radiative feedback. The wave packet in the localized AEJ appears to satisfy a condition for absolute instability, a form of spatial hydrodynamic instability. However, this needs to be verified more rigorously. We conclude that the limited zonal extent of the AEJ is not an impediment. Our results also suggest that the intermittent nature of AEWs is mediated, not by transitions between convective and absolute instability, but likely by external sources such as propagating equatorial wave modes.


Sign in / Sign up

Export Citation Format

Share Document