scholarly journals Seasonal Effects of Indian Ocean Freshwater Forcing in a Regional Coupled Model*

2009 ◽  
Vol 22 (24) ◽  
pp. 6577-6596 ◽  
Author(s):  
Hyodae Seo ◽  
Shang-Ping Xie ◽  
Raghu Murtugudde ◽  
Markus Jochum ◽  
Arthur J. Miller

Abstract Effects of freshwater forcing from river discharge into the Indian Ocean on oceanic vertical structure and the Indian monsoons are investigated using a fully coupled, high-resolution, regional climate model. The effect of river discharge is included in the model by restoring sea surface salinity (SSS) toward observations. The simulations with and without this effect in the coupled model reveal a highly seasonal influence of salinity and the barrier layer (BL) on oceanic vertical density stratification, which is in turn linked to changes in sea surface temperature (SST), surface winds, and precipitation. During both boreal summer and winter, SSS relaxation leads to a more realistic spatial distribution of salinity and the BL in the model. In summer, the BL in the Bay of Bengal enhances the upper-ocean stratification and increases the SST near the river mouths where the freshwater forcing is largest. However, the warming is limited to the coastal ocean and the amplitude is not large enough to give a significant impact on monsoon rainfall. The strengthened BL during boreal winter leads to a shallower mixed layer. Atmospheric heat flux forcing acting on a thin mixed layer results in an extensive reduction of SST over the northern Indian Ocean. Relatively suppressed mixing below the mixed layer warms the subsurface layer, leading to a temperature inversion. The cooling of the sea surface induces a large-scale adjustment in the winter atmosphere with amplified northeasterly winds. This impedes atmospheric convection north of the equator while facilitating it in the austral summer intertropical convergence zone, resulting in a hemispheric-asymmetric response pattern. Overall, the results suggest that freshwater forcing from the river discharges plays an important role during the boreal winter by affecting SST and the coupled ocean–atmosphere interaction, with potential impacts on the broadscale regional climate.

2007 ◽  
Vol 20 (13) ◽  
pp. 3320-3343 ◽  
Author(s):  
Roxana C. Wajsowicz

Abstract Whether seasonally phased-locked persistence and predictability barriers, similar to the boreal spring barriers found for El Niño–Southern Oscillation (ENSO), exist for the tropical Indian Ocean sector climate is investigated using observations and hindcasts from two coupled ocean–atmosphere dynamical ensemble forecast systems: the National Centers for Environmental Prediction (NCEP) Coupled Forecast System (CFS) for 1990–2003, and the NASA Seasonal-to-Interannual Prediction Project (NSIPP) system for 1993–2002. The potential predictability of the climate is also assessed under the “perfect model/ensemble” assumption. Lagged correlations of the indices calculated over the east and west poles of the Indian Ocean dipole mode (IDM) index show weak sea surface temperature anomaly (SSTA) persistence barriers in boreal spring at both poles, but the major decline in correlation at the east pole occurs in boreal midwinter for all start months with an almost immediate recovery, albeit negative correlations, until summer approaches. Processes responsible for the change in sign of SSTAs associated with a major IDM event effect a similar change on much weaker SSTAs. At the west pole, a major decline occurs at the end of boreal summer for fall and winter starts when the thermocline deepens with the seasonal cycle and coupling between the ocean and atmosphere is weak. A decline in skillful prediction of SSTA at the east pole over boreal winter is also found in the hindcasts, but the relatively large thermocline depth anomalies are skillfully predicted through this time and skill in SSTA prediction returns. A predictability barrier at the onset of the boreal summer monsoon is found at both IDM poles with some return of skill in late fall. Potential predictability calculations suggest that this barrier may be overcome at the west pole with improvements to the forecast systems, but not at the east pole for forecasts initiated in boreal winter unless the ocean is initialized with a memory of fall conditions.


Author(s):  
Jeremy E. Diem ◽  
Jonathan D. Salerno ◽  
Michael W. Palace ◽  
Karen Bailey ◽  
Joel Hartter

AbstractSubstantial research on the teleconnections between rainfall and sea-surface temperatures (SSTs) has been conducted across equatorial Africa as a whole, but currently no focused examination exists for western Uganda, a rainfall transition zone between eastern equatorial Africa (EEA) and central equatorial Africa (CEA). This study examines correlations between satellite-based rainfall totals in western Uganda and SSTs – and associated indices – across the tropics over 1983-2019. It is found that rainfall throughout western Uganda is teleconnected to SSTs in all tropical oceans, but much more strongly to SSTs in the Indian and Pacific Oceans than the Atlantic Ocean. Increased Indian Ocean SSTs during boreal winter, spring, and autumn and a pattern similar to a positive Indian Ocean Dipole during boreal summer are associated with increased rainfall in western Uganda. The most spatially complex teleconnections in western Uganda occur during September-December, with northwestern Uganda being similar to EEA during this period and southwestern Uganda being similar to CEA. During boreal autumn and winter, northwestern Uganda has increased rainfall associated with SST patterns resembling a positive Indian Ocean Dipole or El Niño. Southwestern Uganda does not have those teleconnections; in fact, increased rainfall there tends to be more associated with La Niña-like SST patterns. Tropical Atlantic Ocean SSTs also appear to influence rainfall in southwestern Uganda in boreal winter as well as in boreal summer. Overall, western Uganda is a heterogeneous region with respect to rainfall-SST teleconnections; therefore, southwestern Uganda and northwestern Uganda require separate analyses and forecasts, especially during boreal autumn and winter.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Ran Wang ◽  
Lin Chen ◽  
Tim Li ◽  
Jing-Jia Luo

The Atlantic Niño/Niña, one of the dominant interannual variability in the equatorial Atlantic, exerts prominent influence on the Earth’s climate, but its prediction skill shown previously was unsatisfactory and limited to two to three months. By diagnosing the recently released North American Multimodel Ensemble (NMME) models, we find that the Atlantic Niño/Niña prediction skills are improved, with the multi-model ensemble (MME) reaching five months. The prediction skills are season-dependent. Specifically, they show a marked dip in boreal spring, suggesting that the Atlantic Niño/Niña prediction suffers a “spring predictability barrier” like ENSO. The prediction skill is higher for Atlantic Niña than for Atlantic Niño, and better in the developing phase than in the decaying phase. The amplitude bias of the Atlantic Niño/Niña is primarily attributed to the amplitude bias in the annual cycle of the equatorial sea surface temperature (SST). The anomaly correlation coefficient scores of the Atlantic Niño/Niña, to a large extent, depend on the prediction skill of the Niño3.4 index in the preceding boreal winter, implying that the precedent ENSO may greatly affect the development of Atlantic Niño/Niña in the following boreal summer.


2008 ◽  
Vol 21 (11) ◽  
pp. 2451-2465 ◽  
Author(s):  
Yan Du ◽  
Tangdong Qu ◽  
Gary Meyers

Abstract Using results from the Simple Ocean Data Assimilation (SODA), this study assesses the mixed layer heat budget to identify the mechanisms that control the interannual variation of sea surface temperature (SST) off Java and Sumatra. The analysis indicates that during the positive Indian Ocean Dipole (IOD) years, cold SST anomalies are phase locked with the season cycle. They may exceed −3°C near the coast of Sumatra and extend as far westward as 80°E along the equator. The depth of the thermocline has a prominent influence on the generation and maintenance of SST anomalies. In the normal years, cooling by upwelling–entrainment is largely counterbalanced by warming due to horizontal advection. In the cooling episode of IOD events, coastal upwelling–entrainment is enhanced, and as a result of mixed layer shoaling, the barrier layer no longer exists, so that the effect of upwelling–entrainment can easily reach the surface mixed layer. Horizontal advection spreads the cold anomaly to the interior tropical Indian Ocean. Near the coast of Java, the northern branch of an anomalous anticyclonic circulation spreads the cold anomaly to the west near the equator. Both the anomalous advection and the enhanced, wind-driven upwelling generate the cold SST anomaly of the positive IOD. At the end of the cooling episode, the enhanced surface thermal forcing overbalances the cooling effect by upwelling/entrainment, and leads to a warming in SST off Java and Sumatra.


2018 ◽  
Vol 18 (16) ◽  
pp. 11973-11990 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Irene Stemmler ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50 % between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1049
Author(s):  
Xin Li ◽  
Ming Yin ◽  
Xiong Chen ◽  
Minghao Yang ◽  
Fei Xia ◽  
...  

Based on the observation and reanalysis data, the relationship between the Madden–Julian Oscillation (MJO) over the Maritime Continent (MC) and the tropical Pacific–Indian Ocean associated mode was analyzed. The results showed that the MJO over the MC region (95°–150° E, 10° S–10° N) (referred to as the MC–MJO) possesses prominent interannual and interdecadal variations and seasonally “phase-locked” features. MC–MJO is strongest in the boreal winter and weakest in the boreal summer. Winter MC–MJO kinetic energy variation has significant relationships with the El Niño–Southern Oscillation (ENSO) in winter and the Indian Ocean Dipole (IOD) in autumn, but it correlates better with the tropical Pacific–Indian Ocean associated mode (PIOAM). The correlation coefficient between the winter MC–MJO kinetic energy index and the autumn PIOAM index is as high as −0.5. This means that when the positive (negative) autumn PIOAM anomaly strengthens, the MJO kinetic energy over the winter MC region weakens (strengthens). However, the correlation between the MC–MJO convection and PIOAM in winter is significantly weaker. The propagation of MJO over the Maritime Continent differs significantly in the contrast phases of PIOAM. During the positive phase of the PIOAM, the eastward propagation of the winter MJO kinetic energy always fails to move across the MC region and cannot enter the western Pacific. However, during the negative phase of the PIOAM, the anomalies of MJO kinetic energy over the MC is not significantly weakened, and MJO can propagate farther eastward and enter the western Pacific. It should be noted that MJO convection is more likely to extend to the western Pacific in the positive phases of PIOAM than in the negative phases. This is significant different with the propagation of the MJO kinetic energy.


2011 ◽  
Vol 24 (15) ◽  
pp. 3830-3849 ◽  
Author(s):  
Mei-Man Lee ◽  
A. J. George Nurser ◽  
I. Stevens ◽  
Jean-Baptiste Sallée

Abstract This study examines the subduction of the Subantarctic Mode Water in the Indian Ocean in an ocean–atmosphere coupled model in which the ocean component is eddy permitting. The purpose is to assess how sensitive the simulated mode water is to the horizontal resolution in the ocean by comparing with a coarse-resolution ocean coupled model. Subduction of water mass is principally set by the depth of the winter mixed layer. It is found that the path of the Agulhas Current system in the model with an eddy-permitting ocean is different from that with a coarse-resolution ocean. This results in a greater surface heat loss over the Agulhas Return Current and a deeper winter mixed layer downstream in the eddy-permitting ocean coupled model. The winter mixed layer depth in the eddy-permitting ocean compares well to the observations, whereas the winter mixed layer depth in the coarse-resolution ocean coupled model is too shallow and has the wrong spatial structure. To quantify the impacts of different winter mixed depths on the subduction, a way to diagnose local subduction is proposed that includes eddy subduction. It shows that the subduction in the eddy-permitting model is closer to the observations in terms of the magnitudes and the locations. Eddies in the eddy-permitting ocean are found to 1) increase stratification and thus oppose the densification by northward Ekman flow and 2) increase subduction locally. These effects of eddies are not well reproduced by the eddy parameterization in the coarse-resolution ocean coupled model.


2008 ◽  
Vol 21 (20) ◽  
pp. 5254-5270 ◽  
Author(s):  
Gilles Bellon ◽  
Adam H. Sobel ◽  
Jerome Vialard

Abstract A simple coupled model is used in a zonally symmetric aquaplanet configuration to investigate the effect of ocean–atmosphere coupling on the Asian monsoon intraseasonal oscillation. The model consists of a linear atmospheric model of intermediate complexity based on quasi-equilibrium theory coupled to a simple, linear model of the upper ocean. This model has one unstable eigenmode with a period in the 30–60-day range and a structure similar to the observed northward-propagating intraseasonal oscillation in the Bay of Bengal/west Pacific sector. The ocean–atmosphere coupling is shown to have little impact on either the growth rate or latitudinal structure of the atmospheric oscillation, but it reduces the oscillation’s period by a quarter. At latitudes corresponding to the north of the Indian Ocean, the sea surface temperature (SST) anomalies lead the precipitation anomalies by a quarter of a period, similarly to what has been observed in the Bay of Bengal. The mixed layer depth is in phase opposition to the SST: a monsoon break corresponds to both a warming and a shoaling of the mixed layer. This behavior results from the similarity between the patterns of the predominant processes: wind-induced surface heat flux and wind stirring. The instability of the seasonal monsoon flow is sensitive to the seasonal mixed layer depth: the oscillation is damped when the oceanic mixed layer is thin (about 10 m deep or thinner), as in previous experiments with several models aimed at addressing the boreal winter Madden–Julian oscillation. This suggests that the weak thermal inertia of land might explain the minima of intraseasonal variance observed over the Asian continent.


Sign in / Sign up

Export Citation Format

Share Document