Comments on “A Surrogate Ensemble Study of Climate Reconstruction Methods: Stochasticity and Robustness”

2010 ◽  
Vol 23 (10) ◽  
pp. 2832-2838 ◽  
Author(s):  
Scott D. Rutherford ◽  
Michael E. Mann ◽  
Caspar M. Ammann ◽  
Eugene R. Wahl

Abstract In a recent paper, Christiansen et al. compared climate reconstruction methods using surrogate ensembles from a coupled general circulation model and pseudoproxies. Their results using the regularized expectation maximization method with truncated total least squares (RegEM-TTLS) appear inconsistent with previous studies. Results presented here show that the poor performance of RegEM-TTLS in Christiansen et al. is due to 1) their use of the nonhybrid method compared to the hybrid method; 2) a stagnation tolerance that is too large and does not permit the solution to stabilize, which is compounded in another paper by Christiansen et al. by the introduction of an inappropriate measure of stagnation; and 3) their use of a truncation parameter that is too large. Thus, the poor performance of RegEM-TTLS in both Christiansen et al. papers is due to poor implementation of the method rather than to shortcomings inherent to the method.

2014 ◽  
Vol 10 (1) ◽  
pp. 1-19 ◽  
Author(s):  
J. Wang ◽  
J. Emile-Geay ◽  
D. Guillot ◽  
J. E. Smerdon ◽  
B. Rajaratnam

Abstract. Pseudoproxy experiments (PPEs) have become an important framework for evaluating paleoclimate reconstruction methods. Most existing PPE studies assume constant proxy availability through time and uniform proxy quality across the pseudoproxy network. Real multiproxy networks are, however, marked by pronounced disparities in proxy quality, and a steep decline in proxy availability back in time, either of which may have large effects on reconstruction skill. A suite of PPEs constructed from a millennium-length general circulation model (GCM) simulation is thus designed to mimic these various real-world characteristics. The new pseudoproxy network is used to evaluate four climate field reconstruction (CFR) techniques: truncated total least squares embedded within the regularized EM (expectation-maximization) algorithm (RegEM-TTLS), the Mann et al. (2009) implementation of RegEM-TTLS (M09), canonical correlation analysis (CCA), and Gaussian graphical models embedded within RegEM (GraphEM). Each method's risk properties are also assessed via a 100-member noise ensemble. Contrary to expectation, it is found that reconstruction skill does not vary monotonically with proxy availability, but also is a function of the type and amplitude of climate variability (forced events vs. internal variability). The use of realistic spatiotemporal pseudoproxy characteristics also exposes large inter-method differences. Despite the comparable fidelity in reconstructing the global mean temperature, spatial skill varies considerably between CFR techniques. Both GraphEM and CCA efficiently exploit teleconnections, and produce consistent reconstructions across the ensemble. RegEM-TTLS and M09 appear advantageous for reconstructions on highly noisy data, but are subject to larger stochastic variations across different realizations of pseudoproxy noise. Results collectively highlight the importance of designing realistic pseudoproxy networks and implementing multiple noise realizations of PPEs. The results also underscore the difficulty in finding the proper bias-variance tradeoff for jointly optimizing the spatial skill of CFRs and the fidelity of the global mean reconstructions.


2006 ◽  
Vol 19 (9) ◽  
pp. 1850-1868 ◽  
Author(s):  
Matthieu Lengaigne ◽  
Jean-Philippe Boulanger ◽  
Christophe Menkes ◽  
Hilary Spencer

Abstract In this study, the mechanisms leading to the El Niño peak and demise are explored through a coupled general circulation model ensemble approach evaluated against observations. The results here suggest that the timing of the peak and demise for intense El Niño events is highly predictable as the evolution of the coupled system is strongly driven by a southward shift of the intense equatorial Pacific westerly anomalies during boreal winter. In fact, this systematic late-year shift drives an intense eastern Pacific thermocline shallowing, constraining a rapid El Niño demise in the following months. This wind shift results from a southward displacement in winter of the central Pacific warmest SSTs in response to the seasonal evolution of solar insolation. In contrast, the intensity of this seasonal feedback mechanism and its impact on the coupled system are significantly weaker in moderate El Niño events, resulting in a less pronounced thermocline shallowing. This shallowing transfers the coupled system into an unstable state in spring but is not sufficient to systematically constrain the equatorial Pacific evolution toward a rapid El Niño termination. However, for some moderate events, the occurrence of intense easterly wind anomalies in the eastern Pacific during that period initiate a rapid surge of cold SSTs leading to La Niña conditions. In other cases, weaker trade winds combined with a slightly deeper thermocline allow the coupled system to maintain a broad warm phase evolving through the entire spring and summer and a delayed El Niño demise, an evolution that is similar to the prolonged 1986/87 El Niño event. La Niña events also show a similar tendency to peak in boreal winter, with characteristics and mechanisms mainly symmetric to those described for moderate El Niño cases.


Sign in / Sign up

Export Citation Format

Share Document