Semiautonomous FTS Observation System for Remote Sensing of Stratospheric and Tropospheric Gases

2009 ◽  
Vol 26 (9) ◽  
pp. 1814-1828 ◽  
Author(s):  
James W. Hannigan ◽  
Michael T. Coffey ◽  
Aaron Goldman

Abstract A solar-viewing Fourier transform spectrometer (FTS) at Thule, Greenland (76.5°N, 68.8°W, 225 m MSL), has been in operation as part of the Network for the Detection of Atmospheric Composition Change [NDACC; formerly the Network for the Detection of Stratospheric Change (NDSC)] since 1999. Observations have been made, on average, 77 days yr−1 during the 8 months, excluding polar night. The semiautonomous operation of the instrument, including its associated optical, cryogenic, and control systems, is of primary importance to acquiring long-term data records efficiently and is herein described. Discussed in this paper are the data processing and spectra analysis methodology that are used to convert the measured interferograms into geophysical data products. Vertical profile retrievals derived from the high-resolution solar absorption spectra use the optimal estimation method. Total column amounts then represent the integration of these vertical profiles. As an example of this process, results are presented for daily average total column amounts of HF, HCl, ClONO2, and CCl2F2 from 2001 through 2007. The means of unperturbed summertime observations are used in a preliminary study of their annual trends.

2014 ◽  
Vol 7 (3) ◽  
pp. 2071-2106
Author(s):  
O. E. García ◽  
M. Schneider ◽  
F. Hase ◽  
T. Blumenstock ◽  
E. Sepúlveda ◽  
...  

Abstract. This study examines the possibility of ground-based remote sensing ozone total column amounts (OTC) from spectral signatures at 3040 and 4030 cm−1. These spectral regions are routinely measured by the NDACC (Network for the Detection of Atmospheric Composition Change) ground-based FTIR (Fourier Transform InfraRed) experiments. In addition, they are potentially detectable by the TCCON (Total Carbon Column Observing Network) FTIR instruments. The ozone retrieval strategy presented here estimates the OTC from NDACC FTIR high resolution spectra with a theoretical precision of about 2% and 5% in the 3040 cm−1 and 4030 cm−1 regions, respectively. Empirically, these OTC products are validated by inter-comparison to FTIR OTC reference retrievals in the 1000 cm−1 spectral region (standard reference for NDACC ozone products), using a 8 year FTIR time series (2005–2012) taken at the subtropical ozone super-site of the Izaña Observatory (Tenerife, Spain). Associated with the weaker ozone signatures at the higher wavenumber regions, the 3040 cm−1 and 4030 cm−1 retrievals show lower vertical sensitivity than the 1000 cm−1 retrievals. Nevertheless, we observe that the rather consistent variations are detected: the variances of the 3040 cm−1 and the 4030 cm−1 retrievals agree within 90% and 75%, respectively, with the variance of the 1000 cm−1 standard retrieval. Furthermore, all three retrievals show very similar annual cycles. However, we observe a large systematic difference of about 7% between the OTC obtained at 1000 cm−1 and 3040 cm−1, indicating a significant inconsistency between the spectroscopic ozone parameters (HITRAN 2012) of both regions. Between the 1000 cm−1 and the 4030 cm−1 retrieval the systematic difference is only 2–3%. Finally, the long-term stability of the OTC retrievals has also been examined, observing that both near infrared retrievals can monitor the long-term OTC evolution in consistency to the 1000 cm−1reference data.


2014 ◽  
Vol 7 (9) ◽  
pp. 3071-3084 ◽  
Author(s):  
O. E. García ◽  
M. Schneider ◽  
F. Hase ◽  
T. Blumenstock ◽  
E. Sepúlveda ◽  
...  

Abstract. This study examines the possibility of ground-based remote-sensing ozone total column amounts (OTC) from spectral signatures at 3040 and 4030 cm−1. These spectral regions are routinely measured by the NDACC (Network for the Detection of Atmospheric Composition Change) ground-based FTIR (Fourier transform infraRed) experiments. In addition, they are potentially detectable by the TCCON (Total Carbon Column Observing Network) FTIR instruments. The ozone retrieval strategy presented here estimates the OTC from NDACC FTIR high-resolution spectra with a theoretical precision of about 2 and 5% in the 3040 and 4030 cm−1 regions, respectively. Empirically, these OTC products are validated by inter-comparison to FTIR OTC reference retrievals in the 1000 cm−1 spectral region (standard reference for NDACC ozone products), using an 8-year FTIR time series (2005–2012) taken at the subtropical ozone supersite of the Izaña Atmospheric Observatory (Tenerife, Spain). Associated with the weaker ozone signatures at the higher wave number regions, the 3040 and 4030 cm−1 retrievals show lower vertical sensitivity than the 1000 cm−1 retrievals. Nevertheless, we observe that the rather consistent variations are detected: the variances of the 3040 cm−1 and the 4030 cm−1 retrievals agree within 90 and 75%, respectively, with the variance of the 1000 cm−1 standard retrieval. Furthermore, all three retrievals show very similar annual cycles. However, we observe a large systematic difference of about 7% between the OTC obtained at 1000 and 3040 cm−1, indicating a significant inconsistency between the spectroscopic ozone parameters (HITRAN, 2012) of both regions. Between the 1000 cm and the 4030 cm−1 retrieval the systematic difference is only 2–3%. Finally, the long-term stability of the OTC retrievals has also been examined, observing that both near-infrared retrievals can monitor the long-term OTC evolution, consistent with the 1000 cm−1 reference data. These findings demonstrate that recording the solar absorption spectra in the 3000 cm−1 spectral region at high spectral resolution (about 0.005 cm−1) might be useful for TCCON sites. Hence, both NDACC and TCCON ground-based FTIR experiments might contribute to global ozone databases.


2020 ◽  
Author(s):  
Minqiang Zhou ◽  
Pucai Wang ◽  
Bavo Langerock ◽  
Corinne Vigouroux ◽  
Christian Hermans ◽  
...  

Abstract. In this study, we present O3 retrievals from ground-based Fourier-transform infrared (FTIR) solar absorption measurements between June 2018 and December 2019 at Xianghe, China (39.75° N, 116.96° E). The FTIR spectrometer at Xianghe is operated with indium gallium arsenide (InGaAs) and indium antimonide (InSb) detectors, recording the spectra between 1800 and 11000 cm−1. As the harmonized FTIR O3 retrieval strategy (Vigouroux et al., 2015) within the Network for the Detection of Atmospheric Composition Change (NDACC) uses the 1000 cm−1 spectral range, we designed an alternative O3 retrieval strategy in the 3040 cm−1 spectral range at Xianghe. The retrieved O3 profile is mainly sensitive to the vertical range between 5 and 40 km, and the degree of freedom for signal is 2.4 ± 0.3 (1σ), indicating that there are two individual pieces of information in partial columns between the surface and 20 km and between 20 and 40 km. According to the optimal estimation method, the systematic and random uncertainties of the FTIR O3 total columns are about 13.6 % and 1.4 %, respectively. The random uncertainty is consistent with the observed daily standard deviation of the FTIR retrievals. To validate the FTIR O3 total and partial columns, we apply the same O3 retrieval strategy at Maïdo, Reunion Island (21.08° N, 55.38° E). The FTIR O3 (3040 cm−1) measurements at Xianghe and Maïdo are then compared with the nearby ozonesondes at Beijing (39.81° N, 116.47° E) and at Gillot (20.89° S, 55.53° E), respectively, as well as with co-located TROPOspheric Monitoring Instrument (TROPOMI) satellite measurements at both sites. In addition, at Maïdo, we compare the FTIR O3 (3040 cm−1) retrievals with the standard NDACC FTIR O3 measurements using the 1000 cm−1 spectral range. It is found that the total columns retrieved from the FTIR O3 3040 cm−1 measurements are underestimated by 5.5–9.0 %, which is mainly due to the systematic uncertainty in the partial column between 20 and 40 km (about −10.4 %). The systematic uncertainty in the partial column between surface and 20 km is relatively small (within 2.4 %). By comparison with other measurements, it is found that the FTIR O3 (3040 cm−1) retrievals capture very well the seasonal and synoptic variations of the O3 total and two partial columns. Therefore, the ongoing FTIR measurements at Xianghe can provide useful information on the O3 variations and (in the future) long-term trends.


2008 ◽  
Vol 8 (23) ◽  
pp. 6865-6886 ◽  
Author(s):  
C. Vigouroux ◽  
M. De Mazière ◽  
P. Demoulin ◽  
C. Servais ◽  
F. Hase ◽  
...  

Abstract. Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network), six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR) instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar). The observed total column ozone trends are in agreement with previous studies: 1) no total column ozone trend is seen at the lowest latitude station Izaña (28° N); 2) slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N), only one of them being significant; 3) the highest latitude stations Harestua (60° N), Kiruna (68° N) and Ny-Ålesund (79° N) show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost stratosphere at the two mid-latitude stations, and at Ny-Ålesund. We find smaller, but significant trends for the 18–27 km layer at Kiruna, Harestua, Jungfraujoch, and Izaña. The results for the upper layer are quite contrasted: we find significant positive trends at Kiruna, Harestua, and Jungfraujoch, and significant negative trends at Zugspitze and Izaña. These ozone partial columns trends are discussed and compared with previous studies.


2008 ◽  
Vol 8 (2) ◽  
pp. 5007-5060 ◽  
Author(s):  
C. Vigouroux ◽  
M. De Mazière ◽  
P. Demoulin ◽  
C. Servais ◽  
F. Hase ◽  
...  

Abstract. Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network), six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR) instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to evaluate the trend of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar). The observed total column ozone trends are in agreement with previous studies: 1) no total column ozone trend is seen at the lowest latitude station Izaña (28° N); 2) slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N), only one of them being significant; 3) the highest latitude stations Harestua (60° N), Kiruna (68° N) and Ny-Ålesund (79° N) show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground–10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost stratosphere at the two mid-latitude stations, and at Ny-Ålesund. We find smaller, but significant trends for the 18–27 km layer at Kiruna, Harestua, Jungfraujoch, and Izaña. The results for the upper layer are quite contrasted: we find significant positive trends at Kiruna, Harestua, and Jungfraujoch, and significant negative trends at Zugspitze and Izaña. These ozone partial columns trends are discussed and confronted to previous studies.


2011 ◽  
Vol 11 (11) ◽  
pp. 5383-5405 ◽  
Author(s):  
D. Fu ◽  
K. A. Walker ◽  
R. L. Mittermeier ◽  
K. Strong ◽  
K. Sung ◽  
...  

Abstract. The 2006 Canadian Arctic ACE (Atmospheric Chemistry Experiment) Validation Campaign collected measurements at the Polar Environment Atmospheric Research Laboratory (PEARL, 86.42° W, 80.05° N, 610 m a.s.l.) at Eureka, Canada from 17 February to 31 March 2006. Two of the ten instruments involved in the campaign, both Fourier transform spectrometers (FTSs), were operated simultaneously, recording atmospheric solar absorption spectra. The first instrument was an ABB Bomem DA8 high-resolution infrared FTS. The second instrument was the Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR), the ground-based version of the satellite-borne FTS on the ACE satellite (ACE-FTS). From the measurements collected by these two ground-based instruments, total column densities of seven stratospheric trace gases (O3, HCl, ClONO2, HF, HNO3, NO2, and NO) were retrieved using the optimal estimation method and these results were compared. Since the two instruments sampled the same portions of atmosphere by synchronizing observations during the campaign and used consistent retrieval parameters, the biases in retrieved columns from the two spectrometers represent the instrumental differences. Mean differences in total column densities of O3, HCl, ClONO2, HF, HNO3, and NO2 from the observations between PARIS-IR and the DA8 FTS are 2.8 %, −3.2 %, −4.3 %, −1.5 %, −1.9 %, and −0.1 %, respectively. Partial column results from the ground-based spectrometers were also compared with partial columns derived from ACE-FTS version 2.2 (including updates for O3) profiles. Mean differences in partial column densities of O3, HCl, ClONO2, HF, HNO3, NO2, and NO from the measurements between ACE-FTS and the DA8 FTS are −5.9 %, −8.5 %, −11.8 %, −0.9 %, −6.6 %, −21.6 % and −7.6 % respectively. Mean differences in partial column densities of O3, HCl, ClONO2, HF, HNO3, NO2 from the measurements between ACE-FTS and the PARIS-IR are −5.2 %, −4.6 %, −2.3 %, −4.7 %, 5.7 % and −11.9 %, respectively. This work provides further evidence of the reliability of ACE-FTS measurements from the first three years of on-orbit observations. Column densities of O3, HCl, ClONO2, and HNO3 from the three FTSs were normalized with respect to HF and used to compare the time evolution of the chemical constituents in the atmosphere over Eureka during spring 2006.


2021 ◽  
Author(s):  
Arno Keppens ◽  
Jean-Christopher Lambert ◽  
Daan Hubert ◽  
Steven Compernolle ◽  
Tijl Verhoelst ◽  
...  

<p>Part of the space segment of EU’s Copernicus Earth Observation programme, the Sentinel-5 Precursor (S5P) mission is dedicated to global and European atmospheric composition measurements of air quality, climate and the stratospheric ozone layer. On board of the S5P early afternoon polar satellite, the imaging spectrometer TROPOMI (TROPOspheric Monitoring Instrument) performs nadir measurements of the Earth radiance within the UV-visible and near-infrared spectral ranges, from which atmospheric ozone profile data are retrieved. Developed at the Royal Netherlands Meteorological Institute (KNMI) and based on the optimal estimation method, TROPOMI’s operational ozone profile retrieval algorithm has recently been upgraded. With respect to early retrieval attempts, accuracy is expected to have improved significantly, also thanks to recent updates of the TROPOMI Level-1b data product. This work reports on the initial validation of the improved TROPOMI height-resolved ozone data in the troposphere and stratosphere, as collected both from the operational S5P Mission Performance Centre/Validation Data Analysis Facility (MPC/VDAF) and from the S5PVT scientific project CHEOPS-5p. Based on the same validation best practices as developed for and applied to heritage sensors like GOME-2, OMI and IASI (Keppens et al., 2015, 2018), the validation methodology relies on the analysis of data retrieval diagnostics – like the averaging kernels’ information content – and on comparisons of TROPOMI data with reference ozone profile measurements. The latter are acquired by ozonesonde, stratospheric lidar, and tropospheric lidar stations performing network operation in the context of WMO's Global Atmosphere Watch and its contributing networks NDACC and SHADOZ. The dependence of TROPOMI’s ozone profile uncertainty on several influence quantities like cloud fraction and measurement parameters like sun and scan angles is examined and discussed. This work concludes with a set of quality indicators, enabling users to verify the fitness-for-purpose of the S5P data.</p>


2016 ◽  
Vol 9 (2) ◽  
pp. 577-585 ◽  
Author(s):  
Matthias Buschmann ◽  
Nicholas M. Deutscher ◽  
Vanessa Sherlock ◽  
Mathias Palm ◽  
Thorsten Warneke ◽  
...  

Abstract. High-resolution solar absorption spectra, taken within the Network for the Detection of Atmospheric Composition Change Infrared Working Group (NDACC-IRWG) in the mid-infrared spectral region, are used to infer partial or total column abundances of many gases. In this paper we present the retrieval of a column-averaged mole fraction of carbon dioxide from NDACC-IRWG spectra taken with a Fourier transform infrared (FTIR) spectrometer at the site in Ny-Ålesund, Spitsbergen. The retrieved time series is compared to colocated standard TCCON (Total Carbon Column Observing Network) measurements of column-averaged dry-air mole fractions of CO2 (denoted by xCO2). Comparing the NDACC and TCCON retrievals, we find that the sensitivity of the NDACC retrieval is lower in the troposphere (by a factor of 2) and higher in the stratosphere, compared to TCCON. Thus, the NDACC retrieval is less sensitive to tropospheric changes (e.g., the seasonal cycle) in the column average.


2020 ◽  
Author(s):  
Arno Keppens ◽  
Daan Hubert ◽  
Jean-Christopher Lambert ◽  
Steven Compernolle ◽  
Tijl Verhoelst ◽  
...  

<p>Part of the space segment of EU’s Copernicus Earth Observation programme, the Sentinel-5 Precursor (S5P) mission is dedicated to global and European atmospheric composition measurements of air quality, climate and the stratospheric ozone layer. On board of the S5P early afternoon polar satellite, the imaging spectrometer TROPOMI (TROPOspheric Monitoring Instrument) performs nadir measurements of the Earth radiance within the UV-visible and near-infrared spectral ranges, from which atmospheric ozone profile data are retrieved. Developed at the Royal Netherlands Meteorological Institute (KNMI) and based on the optimal estimation method, TROPOMI’s operational ozone profile retrieval algorithm has recently been upgraded. With respect to early retrieval attempts, accuracy is expected to have improved significantly, also thanks to recent updates of the TROPOMI Level-1b data product. This work reports on the initial validation of the improved TROPOMI height-resolved ozone data in the troposphere and stratosphere, as collected both from the operational S5P Mission Performance Centre/Validation Data Analysis Facility (MPC/VDAF) and from the S5PVT scientific project CHEOPS-5p. Based on the same validation best practices as developed for and applied to heritage sensors like GOME-2, OMI and IASI (Keppens et al., 2015, 2018), the validation methodology relies on the analysis of data retrieval diagnostics – like the averaging kernels’ information content – and on comparisons of TROPOMI data with reference ozone profile measurements. The latter are acquired by ozonesonde, stratospheric lidar, and tropospheric lidar stations performing network operation in the context of WMO's Global Atmosphere Watch and its contributing networks NDACC and SHADOZ. The dependence of TROPOMI’s ozone profile uncertainty on several influence quantities like cloud fraction and measurement parameters like sun and scan angles is examined and discussed. This work concludes with a set of quality indicators enabling users to verify the fitness-for-purpose of the S5P data.</p>


2007 ◽  
Vol 24 (3) ◽  
pp. 432-448 ◽  
Author(s):  
A. Wiacek ◽  
J. R. Taylor ◽  
K. Strong ◽  
R. Saari ◽  
T. E. Kerzenmacher ◽  
...  

Abstract The authors describe the optical design of a high-resolution Fourier Transform Spectrometer (FTS), which serves as the primary instrument at the University of Toronto Atmospheric Observatory (TAO). The FTS is dedicated to ground-based infrared solar absorption atmospheric measurements from Toronto, Ontario, Canada. Instrument performance is discussed in terms of instrumental line shape (ILS) and phase error and modulation efficiency as a function of optical path difference. Typical measurement parameters are presented together with retrieval parameters used to derive total and partial column concentrations of ozone. Retrievals at TAO employ the optimal estimation method (OEM), and some impacts of the necessary a priori constraints are examined. In March 2004, after participating in a retrieval algorithm user intercomparison exercise, the TAO FTS was granted the status of a Complementary Observation Station within the international community of high-resolution FTS users in the Network for the Detection of Atmospheric Composition and Change (NDACC). During this exercise, average differences between total columns retrieved from the same spectra by different users were below 2.1% for O3, HCl, and N2O in the blind phase, and below 1% in the open phase, when all retrieval constraints were identical. Finally, a 2.5-yr time series of monthly mean stratospheric ozone columns agrees within 3% with those retrieved from Optical Spectrograph and Infrared Imager System (OSIRIS) measurements on board the Odin satellite, which is within the errors of both measurement platforms.


Sign in / Sign up

Export Citation Format

Share Document