scholarly journals Surface Wind Direction Variability

2011 ◽  
Vol 50 (1) ◽  
pp. 144-152 ◽  
Author(s):  
Larry Mahrt

Abstract Common large shifts of wind direction in the weak-wind nocturnal boundary layer are poorly understood and are not adequately captured by numerical models and statistical parameterizations. The current study examines 15 datasets representing a variety of surface conditions to study the behavior of wind direction variability. In contrast to previous studies, the current investigation directly examines wind direction changes with emphasis on weak winds and wind direction changes over smaller time periods of minutes to tens of minutes, including large wind direction shifts. A formulation of the wind direction changes is offered that provides more realistic behavior for very weak winds and for complex terrain.

2013 ◽  
Vol 52 (7) ◽  
pp. 1610-1617 ◽  
Author(s):  
Pedro A. Jiménez ◽  
Jimy Dudhia

AbstractThe ability of the Weather Research and Forecasting (WRF) model to reproduce the surface wind direction over complex terrain is examined. A simulation spanning a winter season at a high horizontal resolution of 2 km is compared with wind direction records from a surface observational network located in the northeastern Iberian Peninsula. A previous evaluation has shown the ability of WRF to reproduce the wind speed over the region once the effects of the subgrid-scale topography are parameterized. Hence, the current investigation complements the previous findings, providing information about the model's ability to reproduce the direction of the surface flow. The differences between the observations and the model are quantified in terms of scores explicitly designed to handle the circular nature of the wind direction. Results show that the differences depend on the wind speed. The larger the wind speed is, the smaller are the wind direction differences. Areas with more complex terrain show larger systematic differences between model and observations; in these areas, a statistical correction is shown to help. The importance of the grid point selected for the comparison with observations is also analyzed. A careful selection is relevant to reducing comparative problems over complex terrain.


2019 ◽  
Vol 11 (7) ◽  
pp. 754 ◽  
Author(s):  
Qiushuang Yan ◽  
Jie Zhang ◽  
Chenqing Fan ◽  
Junmin Meng

The co-located normalized radar backscatter cross section measurements from the Global Precipitation Measurement (GPM) Ku/Ka-band dual-frequency precipitation radar (DPR) and sea surface wind; wave and temperature observations from the National Data Buoy Center (NDBC) moored buoys are used to analyze the dependence and sensitivity of Ku- and Ka-band backscatter on surface conditions at low-incidence angles. Then the potential for inverting wind and wave parameters directly from low-incidence σ0 measurements is discussed. The results show that the KaPR σ0 is more sensitive to surface conditions than the KuPR σ0 overall. Nevertheless; both the KuPR σ0 and KaPR σ0 are strongly correlated with wind speed (U10) and average wave steepness (δa) with the exception of specific transitional incidence angles. Moreover, U10 and δa could be retrieved from pointwise σ0 near nadir and near 18°. Near 18°; wind direction information is needed as the effect of wind direction on σ0 becomes increasingly significant with incidence angle. To improve the performance of U10 retrieval; especially for low U10; auxiliary δa information would be most helpful; and sea surface temperature is better taken into account. Other wave parameters; such as significant wave height; wave period and wave age; are partly correlated with σ0. It is generally more difficult to retrieve those parameters directly from pointwise σ0. For the retrieval of those wave parameters; various auxiliary information is needed. Wind direction and wave direction cannot be retrieved from pointwise σ0.


2011 ◽  
Vol 139 (5) ◽  
pp. 1389-1409 ◽  
Author(s):  
Juerg Schmidli ◽  
Brian Billings ◽  
Fotini K. Chow ◽  
Stephan F. J. de Wekker ◽  
James Doyle ◽  
...  

Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.


2021 ◽  
Author(s):  
Jutta Kesti ◽  
John Backman ◽  
Ewan James O'Connor ◽  
Anne Hirsikko ◽  
Eija Asmi ◽  
...  

Abstract. Aerosol particles play an important in role in the microphysics of clouds and hence on their likelihood to precipitate. In the changing climate already dry areas such as the United Arab Emirates (UAE) are predicted to become even drier. Comprehensive observations of the daily and seasonal variation in aerosol particle properties in such locations are required reducing the uncertainty in such predictions. We analyse observations from a one-year measurement campaign at a background location in the United Arab Emirates to investigate the properties of aerosol particles in this region, study the impact of boundary layer mixing on background aerosol particle properties measured at the surface and study the temporal evolution of the aerosol particle cloud formation potential in the region. We used in-situ aerosol particle measurements to characterise the aerosol particle composition, size, number and cloud condensation nuclei (CCN) properties, in-situ SO2 measurements as an anthropogenic signature and a long-range scanning Doppler lidar to provide vertical profiles of the horizontal wind and turbulent properties to monitor the evolution of the boundary layer. Anthropogenic sulphate dominated the aerosol particle mass composition in this location. There was a clear diurnal cycle in the surface wind direction, which had a strong impact on aerosol particle total number concentration, SO2 concentration and black carbon mass concentration. Local sources were the predominant source of black carbon, as concentrations clearly depended on the presence of turbulent mixing, with much higher values during calm nights. The measured concentrations of SO2, instead, were highly dependent on the surface wind direction as well as on the depth of the boundary layer when entrainment from the advected elevated layers occurred. The wind direction at the surface or of the elevated layer suggests that the cities of Dubai, Abu Dhabi and other coastal conurbations were the remote sources of SO2. We observed new aerosol particle formation events almost every day (on four days out of five on average). Calm nights had the highest CCN number concentrations and lowest κ values and activation fractions. We did not observe any clear dependence of CCN number concentration and κ parameter on the height of the daytime boundary layer, whereas the activation fraction did show a slight increase with increasing boundary layer height, due to the change in the shape of the aerosol particle size distribution where the relative portion of larger aerosol particles increased with increasing boundary layer height. We believe that this indicates that size is more important than chemistry for aerosol particle CCN activation at this site. The combination of instrumentation used in this campaign enabled us to identify periods when anthropogenic pollution from remote sources that had been transported in elevated layers was present, and had been mixed down to the surface in the growing boundary layer.


2003 ◽  
Vol 42 (7) ◽  
pp. 952-969 ◽  
Author(s):  
T. B. P. S. Rama V. Krishna ◽  
Maithili Sharan ◽  
S. G. Gopalakrishnan ◽  
Aditi

2011 ◽  
Vol 24 (15) ◽  
pp. 3892-3909 ◽  
Author(s):  
Adam H. Monahan ◽  
Yanping He ◽  
Norman McFarlane ◽  
Aiguo Dai

Abstract The probability density function (pdf) of land surface wind speeds is characterized using a global network of observations. Daytime surface wind speeds are shown to be broadly consistent with the Weibull distribution, while nighttime surface wind speeds are generally more positively skewed than the corresponding Weibull distribution (particularly in summer). In the midlatitudes, these strongly positive skewnesses are shown to be generally associated with conditions of strong surface stability and weak lower-tropospheric wind shear. Long-term tower observations from Cabauw, the Netherlands, and Los Alamos, New Mexico, demonstrate that lower-tropospheric wind speeds become more positively skewed than the corresponding Weibull distribution only in the shallow (~50 m) nocturnal boundary layer. This skewness is associated with two populations of nighttime winds: (i) strongly stably stratified with strong wind shear and (ii) weakly stably or unstably stratified with weak wind shear. Using an idealized two-layer model of the boundary layer momentum budget, it is shown that the observed variability of the daytime and nighttime surface wind speeds can be accounted for through a stochastic representation of intermittent turbulent mixing at the nocturnal boundary layer inversion.


Sign in / Sign up

Export Citation Format

Share Document