scholarly journals Lagrangian Coherent Structures near a Subtropical Jet Stream

2010 ◽  
Vol 67 (7) ◽  
pp. 2307-2319 ◽  
Author(s):  
Wenbo Tang ◽  
Manikandan Mathur ◽  
George Haller ◽  
Douglas C. Hahn ◽  
Frank H. Ruggiero

Abstract Direct Lyapunov exponents and stability results are used to extract and distinguish Lagrangian coherent structures (LCS) from a three-dimensional atmospheric dataset generated from the Weather Research and Forecasting (WRF) model. The numerical model is centered at 19.78°N, 155.55°W, initialized from the Global Forecast System for the case of a subtropical jet stream near Hawaii on 12 December 2002. The LCS are identified that appear to create optical and mechanical turbulence, as evidenced by balloon data collected during a measurement campaign near Hawaii.

Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 776 ◽  
Author(s):  
Haishan Li ◽  
Ke Fan ◽  
Zhiqing Xu ◽  
Hua Li

A set of three-dimensional jet indices (jet speed index, jet pressure index, jet latitude index) has been proposed in previous literature to describe the variation of jet streams in both the horizontal and vertical direction. We refer to these indices at the ‘AC’ indices, after the names of the researchers involved. However, the physical meaning of the AC indices and the relationship between AC indices and climate systems are not fully understood. Further study is still needed for applying the indices in East Asia (70°–140° E). In this study, based on the understanding of the physical meaning of the AC indices, latitudinal ranges of East Asian jet streams are determined, and a set of modified AC indices is proposed. Based on the modified AC indices, the linear trends in East Asian jet streams are studied, and the relationship between East Asian jet streams and the climate is researched. The results show that the jet speed index corresponds to the meridional temperature gradient (MTG) of the middle to upper troposphere (500–200 hPa); the jet pressure index corresponds to the pressure level at which the MTG equals zero; and the jet latitude reflects the meridional MTG distribution. The latitudinal ranges of jet streams are determined based on the meridional profiles of climatological zonal-mean zonal winds. Within such a latitudinal range, the climatological zonal-mean zonal winds between 400 and 100 hPa are only westerly, and the maximum wind speed in the vertical direction at every latitude appears between 400 and 100 hPa. The jet streams can be further classified according to the features of the profiles. For East Asia (70°–140° E), jet streams can be classified into winter subtropical jet streams (15°–47.5° N), summer subtropical jet streams (27.5°–60° N), and summer polar front jet streams (60°–87.5° N). The classification of jet streams can be supported by their correspondence to the distribution of tropospheric baroclinicity. A set of modified AC indices can be acquired by using the new ranges of East Asian jet streams in the definition of the original AC indices. Descriptions of jet streams using the modified AC indices are more in accordance with the distributional features of the climatological zonal winds over East Asia, and the physical meanings of the modified AC indices are more definite than the original indices. Using the modified AC indices, we find a significant weakening trend in the strength of the summer subtropical jet stream (−0.13 m/s/10 yr) and a significant northward shift of the winter subtropical jet stream (0.22°/10 yr), and the possible reasons for these trends are studied. Finally, the relationships of East Asian jet streams in winter and summer with atmospheric circulation, temperature, and precipitation are also investigated in this study.


2020 ◽  
Vol 59 (11) ◽  
pp. 1919-1931
Author(s):  
Brent Knutson ◽  
Wenbo Tang ◽  
Pak Wai Chan

AbstractThe operational light detection and ranging (lidar) data from the Hong Kong International Airport (HKIA) in China are assimilated in the six-nest, high-resolution Weather Research and Forecasting (WRF) Model. The existing radar data assimilation schemes in the WRF data assimilation (WRFDA) package have been adapted to accommodate the high temporal frequency and spatial resolution of the lidar observations. The weather data are then used to produce Lagrangian coherent structures to detect atmospheric hazards for flights. The coherent structures obtained from the various datasets are contrasted against flight data measured on aircraft. It is found that both WRF and WRFDA produce coherent structures that are more distinguishable than those obtained from two-dimensional retrieval, which may improve the detection of true wind shear hazards.


2011 ◽  
Vol 139 (4) ◽  
pp. 1103-1130 ◽  
Author(s):  
Hugh Morrison ◽  
Jason Milbrandt

Idealized three-dimensional supercell simulations were performed using the two-moment bulk microphysics schemes of Morrison and Milbrandt–Yau in the Weather Research and Forecasting (WRF) model. Despite general similarities in these schemes, the simulations were found to produce distinct differences in storm structure, precipitation, and cold pool strength. In particular, the Morrison scheme produced much higher surface precipitation rates and a stronger cold pool, especially in the early stages of storm development. A series of sensitivity experiments was conducted to identify the primary differences between the two schemes that resulted in the large discrepancies in the simulations. Different approaches in treating graupel and hail were found to be responsible for many of the key differences between the baseline simulations. The inclusion of hail in the baseline simulation using the Milbrant–Yau scheme with two rimed-ice categories (graupel and hail) had little impact, and therefore resulted in a much different storm than the baseline run with the single-category (hail) Morrison scheme. With graupel as the choice of the single rimed-ice category, the simulated storms had considerably more frozen condensate in the anvil region, a weaker cold pool, and reduced surface precipitation compared to the runs with only hail, whose higher terminal fall velocity inhibited lofting. The cold pool strength was also found to be sensitive to the parameterization of raindrop breakup, particularly for the Morrison scheme, because of the effects on the drop size distributions and the corresponding evaporative cooling rates. The use of a more aggressive implicit treatment of drop breakup in the baseline Morrison scheme, by limiting the mean–mass raindrop diameter to a maximum of 0.9 mm, opposed the tendency of this scheme to otherwise produce large mean drop sizes and a weaker cold pool compared to the hail-only run using the Milbrandt–Yau scheme.


2012 ◽  
Vol 30 (10) ◽  
pp. 1463-1477 ◽  
Author(s):  
R. Wang ◽  
S. D. Zhang ◽  
H. G. Yang ◽  
K. M. Huang

Abstract. The activities of mid-latitude planetary waves (PWs) in the troposphere and lower stratosphere (TLS) are presented by using the radiosonde data from 2000 to 2004 over four American stations (Miramar Nas, 32.9° N, 117.2° W; Santa Teresa, 31.9° N, 106.7° W; Fort Worth, 32.8° N, 97.3° W; and Birmingham, 33.1° N, 86.7° W) and one Chinese station (Wuhan, 30.5° N, 114.4° E). Statistically, strong PWs mainly appear around subtropical jet stream in the troposphere and lower stratosphere. In the troposphere, the activities of the mid-latitude PWs are strong around the centre of the subtropical jet stream in winter and become small near the tropopause, which indicates that the subtropical jet stream may strengthen the propagation of PWs or even be one of the PW excitation sources. Among the three disturbance components of temperature, zonal and meridional winds, PWs at Wuhan are stronger in the temperature component, but weaker in the zonal wind component than at the other four American stations. While in the meridional wind component, the strengths of PW spectral amplitudes at the four American stations decrease from west to east, and their amplitudes are all larger than that of Wuhan. However, the PWs are much weaker in the stratosphere and only the lower frequency parts remain. The amplitudes of the PWs in the stratosphere increase with height and are strong in winter with the zonal wind component being the strongest. Using the refractive index, we found that whether the PWs could propagate upward to the stratosphere depends on the thickness of the tropopause reflection layer. In the case study of the 2000/2001 winter, it is observed that the quasi 16-day wave in the troposphere is a quasi standing wave in the vertical direction and propagates upward slowly with vertical wavelength greater than 24 km in the meridional component. It propagates eastward with the zonal numbers between 5 and 8, and the quasi 16-day wave at Wuhan is probably the same quasi 16-day wave at the three American stations (Miramar Nas, Santa Teresa and Fort Worth), which propagates steadily along the latitude. The quasi 16-day wave in the stratosphere is also a standing wave with vertical wavelength larger than 10 km in the zonal wind component, and it is westward with the zonal number 1–2. However, the quasi 16-day wave in the stratosphere may not come from the troposphere because of the different concurrent times, propagation directions and velocities. By using the global dataset of NCEP/NCAR reanalysis data, the zonal propagation parameters of 16-day waves in the troposphere and stratosphere are calculated. It is found that the tropospheric 16-day wave propagates eastward with the zonal number 6, while the stratospheric 16-day wave propagates westward with the zonal number 2, which matches well with the results of radiosonde data.


1961 ◽  
Vol 18 (2) ◽  
pp. 172-191 ◽  
Author(s):  
T. N. Krishnamurti

Sign in / Sign up

Export Citation Format

Share Document