Terminal Wind Hazard Analyses Based on Assimilated Weather Data and Lagrangian Coherent Structures

2020 ◽  
Vol 59 (11) ◽  
pp. 1919-1931
Author(s):  
Brent Knutson ◽  
Wenbo Tang ◽  
Pak Wai Chan

AbstractThe operational light detection and ranging (lidar) data from the Hong Kong International Airport (HKIA) in China are assimilated in the six-nest, high-resolution Weather Research and Forecasting (WRF) Model. The existing radar data assimilation schemes in the WRF data assimilation (WRFDA) package have been adapted to accommodate the high temporal frequency and spatial resolution of the lidar observations. The weather data are then used to produce Lagrangian coherent structures to detect atmospheric hazards for flights. The coherent structures obtained from the various datasets are contrasted against flight data measured on aircraft. It is found that both WRF and WRFDA produce coherent structures that are more distinguishable than those obtained from two-dimensional retrieval, which may improve the detection of true wind shear hazards.

2010 ◽  
Vol 67 (7) ◽  
pp. 2307-2319 ◽  
Author(s):  
Wenbo Tang ◽  
Manikandan Mathur ◽  
George Haller ◽  
Douglas C. Hahn ◽  
Frank H. Ruggiero

Abstract Direct Lyapunov exponents and stability results are used to extract and distinguish Lagrangian coherent structures (LCS) from a three-dimensional atmospheric dataset generated from the Weather Research and Forecasting (WRF) model. The numerical model is centered at 19.78°N, 155.55°W, initialized from the Global Forecast System for the case of a subtropical jet stream near Hawaii on 12 December 2002. The LCS are identified that appear to create optical and mechanical turbulence, as evidenced by balloon data collected during a measurement campaign near Hawaii.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1727
Author(s):  
Valerio Capecchi ◽  
Andrea Antonini ◽  
Riccardo Benedetti ◽  
Luca Fibbi ◽  
Samantha Melani ◽  
...  

During the night between 9 and 10 September 2017, multiple flash floods associated with a heavy-precipitation event affected the town of Livorno, located in Tuscany, Italy. Accumulated precipitation exceeding 200 mm in two hours was recorded. This rainfall intensity is associated with a return period of higher than 200 years. As a consequence, all the largest streams of the Livorno municipality flooded several areas of the town. We used the limited-area weather research and forecasting (WRF) model, in a convection-permitting setup, to reconstruct the extreme event leading to the flash floods. We evaluated possible forecasting improvements emerging from the assimilation of local ground stations and X- and S-band radar data into the WRF, using the configuration operational at the meteorological center of Tuscany region (LaMMA) at the time of the event. Simulations were verified against weather station observations, through an innovative method aimed at disentangling the positioning and intensity errors of precipitation forecasts. A more accurate description of the low-level flows and a better assessment of the atmospheric water vapor field showed how the assimilation of radar data can improve quantitative precipitation forecasts.


2019 ◽  
Vol 12 (9) ◽  
pp. 4031-4051 ◽  
Author(s):  
Shizhang Wang ◽  
Zhiquan Liu

Abstract. A reflectivity forward operator and its associated tangent linear and adjoint operators (together named RadarVar) were developed for variational data assimilation (DA). RadarVar can analyze both rainwater and ice-phase species (snow and graupel) by directly assimilating radar reflectivity observations. The results of three-dimensional variational (3D-Var) DA experiments with a 3 km grid mesh setting of the Weather Research and Forecasting (WRF) model showed that RadarVar was effective at producing an analysis of reflectivity pattern and intensity similar to the observed data. Two to three outer loops with 50–100 iterations in each loop were needed to obtain a converged 3-D analysis of reflectivity, rainwater, snow, and graupel, including the melting layers with mixed-phase hydrometeors. It is shown that the deficiencies in the analysis using this operator, caused by the poor quality of the background fields and the use of the static background error covariance, can be partially resolved by using radar-retrieved hydrometeors in a preprocessing step and tuning the spatial correlation length scales of the background errors. The direct radar reflectivity assimilation using RadarVar also improved the short-term (2–5 h) precipitation forecasts compared to those of the experiment without DA.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Juanzhen Sun ◽  
Hongli Wang

The variational radar data assimilation system has been developed and tested for the Advanced Research Weather Research and Forecasting (WRF-ARW) model since 2005. Initial efforts focused on the assimilation of the radar observations in the 3-dimensional variational framework, and recently the efforts have been extended to the 4-dimensional system. This article provides a review of the basics of the system and various studies that have been conducted to evaluate and improve the performance of the system. Future activities that are required to further improve the system and to make it operational are also discussed.


2021 ◽  
Vol 13 (22) ◽  
pp. 4556
Author(s):  
Dongmei Xu ◽  
Xuewei Zhang ◽  
Hong Li ◽  
Haiying Wu ◽  
Feifei Shen ◽  
...  

In this study, the case of super typhoon Lekima, which landed in Jiangsu and Zhejiang Province on 4 August 2019, is numerically simulated. Based on the Weather Research and Forecasting (WRF) model, the sensitivity experiments are carried out with different combinations of physical parameterization schemes. The results show that microphysical schemes have obvious impacts on the simulation of the typhoon’s track, while the intensity of the simulated typhoon is more sensitive to surface physical schemes. Based on the results of the typhoon’s track and intensity simulation, one parameterization scheme was further selected to provide the background field for the following data assimilation experiments. Using the three-dimensional variational (3DVar) data assimilation method, the Microwave Humidity Sounder-2 (MWHS-2) radiance data onboard the Fengyun-3D satellite (FY-3D) were assimilated for this case. It was found that the assimilation of the FY-3D MWHS-2 radiance data was able to optimize the initial field of the numerical model in terms of the model variables, especially for the humidity. Finally, by the inspection of the typhoon’s track and intensity forecast, it was found that the assimilation of FY-3D MWHS-2 radiance data improved the skill of the prediction for both the typhoon’s track and intensity.


2020 ◽  
Vol 24 (3) ◽  
pp. 1227-1249 ◽  
Author(s):  
Moshe Armon ◽  
Francesco Marra ◽  
Yehouda Enzel ◽  
Dorita Rostkier-Edelstein ◽  
Efrat Morin

Abstract. Heavy precipitation events (HPEs) can lead to natural hazards (e.g. floods and debris flows) and contribute to water resources. Spatiotemporal rainfall patterns govern the hydrological, geomorphological, and societal effects of HPEs. Thus, a correct characterisation and prediction of rainfall patterns is crucial for coping with these events. Information from rain gauges is generally limited due to the sparseness of the networks, especially in the presence of sharp climatic gradients. Forecasting HPEs depends on the ability of weather models to generate credible rainfall patterns. This paper characterises rainfall patterns during HPEs based on high-resolution weather radar data and evaluates the performance of a high-resolution, convection-permitting Weather Research and Forecasting (WRF) model in simulating these patterns. We identified 41 HPEs in the eastern Mediterranean from a 24-year radar record using local thresholds based on quantiles for different durations, classified these events into two synoptic systems, and ran model simulations for them. For most durations, HPEs near the coastline were characterised by the highest rain intensities; however, for short durations, the highest rain intensities were found for the inland desert. During the rainy season, the rain field's centre of mass progresses from the sea inland. Rainfall during HPEs is highly localised in both space (less than a 10 km decorrelation distance) and time (less than 5 min). WRF model simulations were accurate in generating the structure and location of the rain fields in 39 out of 41 HPEs. However, they showed a positive bias relative to the radar estimates and exhibited errors in the spatial location of the heaviest precipitation. Our results indicate that convection-permitting model outputs can provide reliable climatological analyses of heavy precipitation patterns; conversely, flood forecasting requires the use of ensemble simulations to overcome the spatial location errors.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Chien-Ben Chou ◽  
Huei-Ping Huang

This work assesses the effects of assimilating atmospheric infrared sounder (AIRS) observations on typhoon prediction using the three-dimensional variational data assimilation (3DVAR) and forecasting system of the weather research and forecasting (WRF) model. Two major parameters in the data assimilation scheme, the spatial decorrelation scale and the magnitude of the covariance matrix of the background error, are varied in forecast experiments for the track of typhoon Sinlaku over the Western Pacific. The results show that within a wide parameter range, the inclusion of the AIRS observation improves the prediction. Outside this range, notably when the decorrelation scale of the background error is set to a large value, forcing the assimilation of AIRS data leads to degradation of the forecast. This illustrates how the impact of satellite data on the forecast depends on the adjustable parameters for data assimilation. The parameter-sweeping framework is potentially useful for improving operational typhoon prediction.


2021 ◽  
Vol 13 (5) ◽  
pp. 886
Author(s):  
Yuanbing Wang ◽  
Jieying He ◽  
Yaodeng Chen ◽  
Jinzhong Min

Geostationary meteorological satellites can provide continuous observations of high-impact weather events with a high temporal and spatial resolution. Sounding the atmosphere using a microwave instrument onboard a geostationary satellite has aroused great study interests for years, as it would increase the observational efficiency as well as provide a new perspective in the microwave spectrum to the measuring capability for the current observational system. In this study, the capability of assimilating future geostationary microwave sounder (GEOMS) radiances was developed in the Weather Research and Forecasting (WRF) model’s data assimilation (WRFDA) system. To investigate if these frequently updated and widely distributed microwave radiances would be beneficial for typhoon prediction, observational system simulation experiments (OSSEs) using synthetic microwave radiances were conducted using the mesoscale numerical model WRF and the advanced hybrid ensemble–variational data assimilation method for the Lekima typhoon that occurred in early August 2019. The results show that general positive forecast impacts were achieved in the OSSEs due to the assimilation of GEOMS radiances: errors of analyses and forecasts in terms of wind, humidity, and temperature were both reduced after assimilating GEOMS radiances when verified against ERA-5 data. The track and intensity predictions of Lekima were also improved before 68 h compared to the best track data in this study. In addition, rainfall forecast improvements were also found due to the assimilation impact of GEOMS radiances. In general, microwave observations from geostationary satellites provide the possibility of frequently assimilating wide-ranging microwave information into a regional model in a finer resolution, which can potentially help improve numerical weather prediction (NWP).


2014 ◽  
Vol 142 (9) ◽  
pp. 3347-3364 ◽  
Author(s):  
Jonathan Poterjoy ◽  
Fuqing Zhang

This study examines the performance of ensemble and variational data assimilation systems for the Weather Research and Forecasting (WRF) Model. These methods include an ensemble Kalman filter (EnKF), an incremental four-dimensional variational data assimilation (4DVar) system, and a hybrid system that uses a two-way coupling between the two approaches (E4DVar). The three methods are applied to assimilate routinely collected data and field observations over a 10-day period that spans the life cycle of Hurricane Karl (2010), including the pregenesis disturbance that preceded its development into a tropical cyclone. In general, forecasts from the E4DVar analyses are found to produce smaller 48–72-h forecast errors than the benchmark EnKF and 4DVar methods for all variables and verification methods tested in this study. The improved representation of low- and midlevel moisture and vorticity in the E4DVar analyses leads to more accurate track and intensity predictions by this system. In particular, E4DVar analyses provide persistently more skillful genesis and rapid intensification forecasts than the EnKF and 4DVar methods during cycling. The data assimilation experiments also expose additional benefits of the hybrid system in terms of physical balance, computational cost, and the treatment of asynoptic observations near the beginning of the assimilation window. These factors make it a practical data assimilation method for mesoscale analysis and forecasting, and for tropical cyclone prediction.


Sign in / Sign up

Export Citation Format

Share Document