Effect of Tropical Waves on the Tropical Tropopause Transition Layer Upwelling

2010 ◽  
Vol 67 (10) ◽  
pp. 3130-3148 ◽  
Author(s):  
Jung-Hee Ryu ◽  
Sukyoung Lee

Abstract An initial-value problem is employed with a GCM to investigate the role of the convectively driven Rossby and Kelvin waves for tropopause transition layer (TTL) upwelling in the tropics. The convective heating is mimicked with a prescribed heating field, and the Lagrangian upwelling is identified by examining the evolution of passive tracer fields whose initial distribution is identical to the initial heating field. This study shows that an overturning circulation, induced by the tropical Rossby waves, is capable of generating the TTL upwelling. Even when the heating is placed in the eastern Pacific, the TTL upwelling occurs only over the western tropical Pacific, indicating that the background flow plays a crucial role. The results from a Rossby wave source analysis suggest that a key feature of the background flow is the strong absolute vorticity gradient associated with the Asian subtropical jet. In addition, static stability is relatively weak over the western Pacific, suggesting that this may also contribute to the TTL upwelling in that region. The background flow also modulates the internal Kelvin waves in such a manner that the coldest region in the TTL (resembling the observed “cold trap”) occurs over the western tropical Pacific. As a consequence, the upwelling air, induced by the meridional momentum flux of the Rossby wave, passes through the cold trap generated by the Kelvin wave. Since in reality the background flow is shaped by the convective heating, the climatological western tropical Pacific heating is ultimately responsible for both the TTL upwelling and the cold trap; however, both processes are realized indirectly through its impact on the background flow and the generation of the tropical waves.

2019 ◽  
Vol 32 (13) ◽  
pp. 3837-3845 ◽  
Author(s):  
Hyun-Su Jo ◽  
Sang-Wook Yeh ◽  
Wenju Cai

Abstract We found that a positive sea surface temperature (SST)–precipitation relationship in the western tropical Pacific (WTP) during boreal spring, in which higher SSTs are associated with higher precipitation, episodically weakens from the late 1990s to the early 2010s. During 1980–98, warm SSTs induce positive precipitation and low pressure in the WTP. The associated enhanced convection dampens the initial warm SSTs by reflecting incoming solar radiation. The reduced incoming solar radiation into the ocean leads to a SST cooling tendency. In contrast, the associated southwesterly wind anomalies reduce oceanic mixing by decreasing the mean wind, contributing to an SST warming tendency, though relatively small. Therefore, the cloud–radiation effect is a dominant process of the negative SST tendency. By contrast, during 1999–2014, although an SST cooling tendency is similarly induced by warm SST anomalies, the cooling tendency is enhanced by anomalous ocean advection, as a result of enhanced easterly wind anomalies in the southern part of the WTP. This results in a weakening of a positive relationship of the SST and precipitation during 1999–2014. As such, the associated anomalous convective heating in the WTP during 1999–2014 is weak, changing the atmospheric teleconnection patterns in the midlatitude and surface air temperature anomalies in western North America and northeastern Eurasia.


2008 ◽  
Vol 65 (6) ◽  
pp. 1817-1837 ◽  
Author(s):  
Jung-Hee Ryu ◽  
Sukyoung Lee ◽  
Seok-Woo Son

Abstract The relationship between local convection, vertically propagating Kelvin waves, and tropical tropopause height variability is examined. This study utilizes both simulations of a global primitive-equation model and global observational datasets. Regression analysis with the data shows that convection over the western tropical Pacific is followed by warming in the upper troposphere (UT) and cooling in lower stratosphere (LS) over most longitudes, which results in a lifting of the tropical tropopause. The model results reveal that these UT–LS temperature anomalies are closely associated with vertically propagating Kelvin waves, indicating that these Kelvin waves drive tropical tropopause undulations at intraseasonal time scales. The model simulations further show that regardless of the longitudinal position of the imposed heating, the UT–LS Kelvin wave reaches its maximum amplitude over the western Pacific. This result, together with an analysis based on wave action conservation, is used to contend that the Kelvin wave amplification over the western Pacific should be attributed to the zonal variation of background zonal wind field, rather than to the proximity of the heating. The wave action conservation law is also used to offer an explanation as to why the vertically propagating Kelvin waves play the central role in driving tropical tropopause height undulations. The zonal and vertical modulation of the Kelvin waves by the background flow may help explain the origin of the very cold air over the western tropical Pacific, which is known to cause freeze-drying of tropospheric air en route to the stratosphere.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 849
Author(s):  
Hyun-Ju Lee ◽  
Emilia-Kyung Jin

The global impact of the tropical Indian Ocean and the Western Pacific (IOWP) is expected to increase in the future because this area has been continuously warming due to global warming; however, the impact of the IOWP forcing on West Antarctica has not been clearly revealed. Recently, ice loss in West Antarctica has been accelerated due to the basal melting of ice shelves. This study examines the characteristics and formation mechanisms of the teleconnection between the IOWP and West Antarctica for each season using the Rossby wave theory. To explicitly understand the role of the background flow in the teleconnection process, we conduct linear baroclinic model (LBM) simulations in which the background flow is initialized differently depending on the season. During JJA/SON, the barotropic Rossby wave generated by the IOWP forcing propagates into the Southern Hemisphere through the climatological northerly wind and arrives in West Antarctica; meanwhile, during DJF/MAM, the wave can hardly penetrate the tropical region. This indicates that during the Austral winter and spring, the IOWP forcing and IOWP-region variabilities such as the Indian Ocean Dipole (IOD) and Indian Ocean Basin (IOB) modes should paid more attention to in order to investigate the ice change in West Antarctica.


2021 ◽  
Author(s):  
S. Mubashshir Ali ◽  
Olivia Martius ◽  
Matthias Röthlisberger

<p>Upper-level synoptic-scale Rossby wave packets are well-known to affect surface weather. When these Rossby wave packets occur repeatedly in the same phase at a specific location, they can result in persistent hot, cold, dry, and wet conditions. The repeated and in-phase occurrence of Rossby wave packets is termed as recurrent synoptic-scale Rossby wave packets (RRWPs). RRWPs result from multiple transient synoptic-scale wave packets amplifying in the same geographical region over several weeks.</p><p>Our climatological analyses using reanalysis data have shown that RRWPs can significantly modulate the persistence of hot, cold, dry, and wet spells in several regions in the Northern and the Southern Hemisphere.  RRWPs can both shorten or extend hot, cold, and dry spell durations. The spatial patterns of statistically significant links between RRWPs and spell durations are distinct for the type of the spell (hot, cold, dry, or wet) and the season (MJJASO or NDJFMA). In the Northern Hemisphere, the spatial patterns where RRWPs either extend or shorten the spell durations are wave-like. In the Southern Hemisphere, the spatial patterns are either wave-like (hot and cold spells) or latitudinally banded (dry and wet spells).</p><p>Furthermore, we explore the atmospheric drivers behind RRWP events. This includes both the background flow and potential wave-triggers such as the Madden Julian Oscillation or blocking. For 100 events of intense Rossby wave recurrence in the Atlantic, the background flow, the intensity of tropical convection, and the occurrence of blocking are studied using flow composites.</p>


2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2014 ◽  
Vol 28 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Laura M. Ciasto ◽  
Graham R. Simpkins ◽  
Matthew H. England

Abstract Teleconnections from tropical Pacific sea surface temperature (SST) anomalies to the high-latitude Southern Hemisphere (SH) are examined using observations and reanalysis. Analysis of tropical Pacific SST anomalies is conducted separately for the central Pacific (CP) and eastern Pacific (EP) regions. During the austral cold season, extratropical SH atmospheric Rossby wave train patterns are observed in association with both EP and CP SST variability. The primary difference between the patterns is the westward displacement of the CP-related atmospheric anomalies, consistent with the westward elongation of CP-related convective SST required for upper-level divergence and Rossby wave generation. Consequently, CP-related patterns of SH SST, Antarctic sea ice, and temperature anomalies also exhibit a westward displacement, but otherwise, the cold season extratropical SH teleconnections are largely similar. During the warm season, however, extratropical SH teleconnections associated with tropical CP and EP SST anomalies differ substantially. EP SST variability is linked to largely zonally symmetric structures in the extratropical atmospheric circulation, which projects onto the southern annular mode (SAM), and is strongly related to the SH temperature and sea ice fields. In contrast, CP SST variability is only weakly related to the SH atmospheric circulation, temperature, or sea ice fields and no longer exhibits any clear association with the SAM. One hypothesized mechanism suggests that the relatively weak CP-related SST anomalies are not able to substantially impact the background flow of the subtropical jet and its subsequent interaction with equatorward-propagating waves associated with variability in the SAM. However, there is currently no widely established mechanism that links tropical Pacific SST anomalies to the SAM.


Sign in / Sign up

Export Citation Format

Share Document