scholarly journals The Madden–Julian Oscillation Simulated in the NCEP Climate Forecast System Model: The Importance of Stratiform Heating

2010 ◽  
Vol 23 (18) ◽  
pp. 4770-4793 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Wanqiu Wang

Abstract This study investigates the capability for simulating the Madden–Julian oscillation (MJO) in a series of atmosphere–ocean coupled and uncoupled simulations using NCEP operational general circulation models. The effect of air–sea coupling on the MJO is examined by comparing long-term simulations from the coupled Climate Forecast System (CFS T62) and the atmospheric Global Forecast System (GFS T62) models. Another coupled simulation with a higher horizontal resolution model (CFS T126) is performed to investigate the impact of model horizontal resolution. Furthermore, to examine the impact on a deep convection scheme, an additional coupled T126 run (CFS T126RAS) is conducted with the relaxed Arakawa–Schubert (RAS) scheme. The most important factors for the proper simulation of the MJO are investigated from these runs. The empirical orthogonal function, lagged regression, and spectral analyses indicated that the interactive air–sea coupling greatly improved the coherence between convection, circulation, and other surface fields on the intraseasonal time scale. A higher horizontal resolution run (CFS T126) did not show significant improvements in the intensity and structure. However, GFS T62, CFS T62, and CFS T126 all yielded the 30–60-day variances that were not statistically distinguishable from the background red noise spectrum. Their eastward propagation was stalled over the Maritime Continent and far western Pacific. In contrast to the model simulations using the simplified Arakawa–Schubert (SAS) cumulus scheme, CFS T126RAS produced statistically significant spectral peaks in the MJO frequency band, and greatly improved the strength of the MJO convection and circulation. Most importantly, the ability of MJO convection signal to penetrate into the Maritime Continent and western Pacific was demonstrated. In this simulation, an early-stage shallow heating and moistening preconditioned the atmosphere for subsequent intense MJO convection and a top-heavy vertical heating profile was formed by stratiform heating in the upper and middle troposphere, working to increase temperature anomalies and hence eddy available potential energy that sustains the MJO. The stratiform heating arose from convective detrainment of moisture to the environment and stratiform anvil clouds. Therefore, the following factors were analyzed to be most important for the proper simulation of the MJO rather than the correct simulations of basic-state precipitation, sea surface temperature, intertropical convergence zone, vertical zonal wind shear, and lower-level zonal winds: 1) an elevated vertical heating structure (by stratiform heating), 2) a moisture–stratiform instability process (a positive feedback process between moisture and convective–stratiform clouds), and 3) the low-level moisture convergence to the east of MJO convection (through the appropriate moisture and convective–stratiform cloud processes–circulation interactions). The improved MJO simulation did improve the global circulation response to the tropical heating and may extend the predictability of weather and climate over Asia and North America.

2008 ◽  
Vol 21 (24) ◽  
pp. 6616-6635 ◽  
Author(s):  
Kathy Pegion ◽  
Ben P. Kirtman

Abstract The impact of coupled air–sea feedbacks on the simulation of tropical intraseasonal variability is investigated in this study using the National Centers for Environmental Prediction Climate Forecast System. The simulation of tropical intraseasonal variability in a freely coupled simulation is compared with two simulations of the atmospheric component of the model. In one experiment, the uncoupled model is forced with the daily sea surface temperature (SST) from the coupled run. In the other, the uncoupled model is forced with climatological SST from the coupled run. Results indicate that the overall intraseasonal variability of precipitation is reduced in the coupled simulation compared to the uncoupled simulation forced by daily SST. Additionally, air–sea coupling is responsible for differences in the simulation of the tropical intraseasonal oscillation between the coupled and uncoupled models, specifically in terms of organization and propagation in the western Pacific. The differences between the coupled and uncoupled simulations are due to the fact that the relationships between precipitation and SST and latent heat flux and SST are much stronger in the coupled model than in the uncoupled model. Additionally, these relationships are delayed by about 5 days in the uncoupled model compared to the coupled model. As demonstrated by the uncoupled simulation forced with climatological SST, some of the intraseasonal oscillation can be simulated by internal atmospheric dynamics. However, the intraseasonally varying SST appears to be important to the amplitude and propagation of the oscillation beyond the Maritime Continent.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 429 ◽  
Author(s):  
Snehlata Tirkey ◽  
P. Mukhopadhyay ◽  
R. Phani Murali Krishna ◽  
Ashish Dhakate ◽  
Kiran Salunke

In the present study, we analyze the Climate Forecast System version 2 (CFSv2) model in three resolutions, T62, T126, and T382. We evaluated the performance of all three resolutions of CFSv2 in simulating the Monsoon Intraseasonal Oscillation (MISO) of the Indian summer monsoon (ISM) by analyzing a suite of dynamic and thermodynamic parameters. Results reveal a slower northward propagation of MISO in all models with the characteristic northwest–southeast tilted rain band missing over India. The anomalous moisture convergence and vorticity were collocated with the convection center instead of being northwards. This affected the northward propagation of MISO. The easterly shear to the north of the equator was better simulated by the coarser resolution models than CFS T382. The low level specific humidity showed improvement only in CFS T382 until ~15° N. The analyses of the vertical profiles of moisture and its relation to rainfall revealed that all CFSv2 resolutions had a lower level of moisture in the lower level (< 850 hPa) and a drier level above. This eventually hampered the growth of deep convection in the model. These model shortcomings indicate a possible need of improvement in moist process parameterization in the model in tune with the increase in resolution.


2021 ◽  
Author(s):  
Kristina Fröhlich ◽  
Katharina Isensee ◽  
Sascha Brandt ◽  
Sebastian Brune ◽  
Andreas Paxian ◽  
...  

&lt;p&gt;In November 2020, the new version of the German Climate Forecast System, GCFS2.1, became operational at Deutscher Wetterdienst (DWD), providing new seasonal forecasts every month. The system &lt;strong&gt;is based&lt;/strong&gt;&lt;strong&gt; &lt;/strong&gt;on the Max Planck Institute for Meteorology Earth-System Model &lt;strong&gt;(MPI-ESM-HR)&lt;/strong&gt; and is developed jointly by DWD, the Max Planck Institute for Meteorology and Universit&amp;#228;t Hamburg.&lt;/p&gt;&lt;p&gt;In GCFS2.1, ERA5 and ORAS5 reanalyses are assimilated using atmospheric, oceanic and sea ice nudging, respectively. From the assimilation, 50-member 6-month forecast ensembles are initialized at the start of each month. Prediction skill is assessed with a 30-member 6-month hindcast ensemble covering the time period 1982-2019 for February, May, August and November start months, and 1990-2019 for the remaining start months. Both the forecast and hindcast ensembles are generated by oceanic bred vectors with additional physical perturbations applied to the upper atmospheric model layers.&lt;/p&gt;&lt;p&gt;Here, we investigate the performance of GCFS2.1 summer and winter forecasts over Europe. While our main focus is on the prediction of large scale patterns that control the weather regimes during these two seasons, e.g. European blockings, special emphasis is paid on the impact of the January 2021 sudden stratospheric warming (SSW) event on the performance of GCFS2.1. The inclusion of the early phases of the January 2021 SSW event in the forecast initialisation significantly changes the GCFS2.1 forecast for February 2021 European surface climate. Prediction skill of GCFS2.1 for summer European blocking events will be also compared to the previous version GCFS2.0.&lt;/p&gt;


2020 ◽  
Vol 20 (14) ◽  
pp. 8975-8987
Author(s):  
Ulrike Niemeier ◽  
Jadwiga H. Richter ◽  
Simone Tilmes

Abstract. Artificial injections of sulfur dioxide (SO2) into the stratosphere show in several model studies an impact on stratospheric dynamics. The quasi-biennial oscillation (QBO) has been shown to slow down or even vanish under higher SO2 injections in the equatorial region. But the impact is only qualitatively but not quantitatively consistent across the different studies using different numerical models. The aim of this study is to understand the reasons behind the differences in the QBO response to SO2 injections between two general circulation models, the Whole Atmosphere Community Climate Model (WACCM-110L) and MAECHAM5-HAM. We show that the response of the QBO to injections with the same SO2 injection rate is very different in the two models, but similar when a similar stratospheric heating rate is induced by SO2 injections of different amounts. The reason for the different response of the QBO corresponding to the same injection rate is very different vertical advection in the two models, even in the control simulation. The stronger vertical advection in WACCM results in a higher aerosol burden and stronger heating of the aerosols and, consequently, in a vanishing QBO at lower injection rate than in simulations with MAECHAM5-HAM. The vertical velocity increases slightly in MAECHAM5-HAM when increasing the horizontal resolution. This study highlights the crucial role of dynamical processes and helps to understand the large uncertainties in the response of different models to artificial SO2 injections in climate engineering studies.


2008 ◽  
Vol 21 (15) ◽  
pp. 3755-3775 ◽  
Author(s):  
Song Yang ◽  
Zuqiang Zhang ◽  
Vernon E. Kousky ◽  
R. Wayne Higgins ◽  
Soo-Hyun Yoo ◽  
...  

Abstract Analysis of the retrospective ensemble predictions (hindcasts) of the NCEP Climate Forecast System (CFS) indicates that the model successfully simulates many major features of the Asian summer monsoon including the climatology and interannual variability of major precipitation centers and atmospheric circulation systems. The model captures the onset of the monsoon better than the retreat of the monsoon, and it simulates the seasonal march of monsoon rainfall over Southeast Asia more realistically than that over South Asia. The CFS predicts the major dynamical monsoon indices and monsoon precipitation patterns several months in advance. It also depicts the interactive oceanic–atmospheric processes associated with the precipitation anomalies reasonably well at different time leads. Overall, the skill of monsoon prediction by the CFS mainly comes from the impact of El Niño–Southern Oscillation (ENSO). The CFS produces weaker-than-observed large-scale monsoon circulation, due partially to the cold bias over the Asian continent. It tends to overemphasize the relationship between ENSO and the Asian monsoon, as well as the impact of ENSO on the Asian and Indo-Pacific climate. A higher-resolution version of the CFS (T126) captures the climatology and variability of the Asian monsoon more realistically than does the current resolution version (T62). The largest improvement occurs in the simulations of precipitation near the Tibetan Plateau and over the tropical Indian Ocean associated with the zonal dipole mode structure. The analysis suggests that NCEP’s next operational model may perform better in simulating and predicting the monsoon climate over Asia and the Indo-Pacific Oceans.


2011 ◽  
Vol 24 (9) ◽  
pp. 2319-2334 ◽  
Author(s):  
Rongqian Yang ◽  
Kenneth Mitchell ◽  
Jesse Meng ◽  
Michael Ek

Abstract To examine the impact from land model upgrades and different land initializations on the National Centers for Environmental Prediction (NCEP)’s Climate Forecast System (CFS), extensive T126 CFS experiments are carried out for 25 summers with 10 ensemble members using the old Oregon State University (OSU) land surface model (LSM) and the new Noah LSM. The CFS using the Noah LSM, initialized in turn with land states from the NCEP–Department of Energy Global Reanalysis 2 (GR-2), Global Land Data System (GLDAS), and GLDAS climatology, is compared to the CFS control run using the OSU LSM initialized with the GR-2 land states. Using anomaly correlation as a primary measure, the summer-season prediction skill of the CFS using different land models and different initial land states is assessed for SST, precipitation, and 2-m air temperature over the contiguous United States (CONUS) on an ensemble basis. Results from these CFS experiments indicate that upgrading from the OSU LSM to the Noah LSM improves the overall CONUS June–August (JJA) precipitation prediction, especially during ENSO neutral years. Such an enhancement in CFS performance requires the execution of a GLDAS with the very same Noah LSM as utilized in the land component of the CFS, while improper initializations of the Noah LSM using the GR-2 land states lead to degraded CFS performance. In comparison with precipitation, the land upgrades have a relatively small impact on both of the SST and 2-m air temperature predictions.


2012 ◽  
Vol 27 (4) ◽  
pp. 1045-1051 ◽  
Author(s):  
Qin Zhang ◽  
Huug van den Dool

Abstract Retrospective forecasts of the new NCEP Climate Forecast System (CFS) have been analyzed out to 45 days from 1999 to 2009 with four members (0000, 0600, 1200, and 1800 UTC) each day. The new version of CFS [CFS, version 2 (CFSv2)] shows significant improvement over the older CFS [CFS, version 1 (CFSv1)] in predicting the Madden–Julian oscillation (MJO), with skill reaching 2–3 weeks in comparison with the CFSv1’s skill of nearly 1 week. Diagnostics of experiments related to the MJO forecast show that the systematic error correction, possible only because of the enormous hindcast dataset and the ensemble aspects of the prediction system (4 times a day), do contribute to improved forecasts. But the main reason is the improvement in the model and initial conditions between 1995 and 2010.


Sign in / Sign up

Export Citation Format

Share Document