scholarly journals Assessing the Impact of Meteorological History on Subtropical Cloud Fraction

2010 ◽  
Vol 23 (11) ◽  
pp. 2926-2940 ◽  
Author(s):  
Guillaume S. Mauger ◽  
Joel R. Norris

Abstract This study presents findings from the application of a new Lagrangian method used to evaluate the meteorological sensitivities of subtropical clouds in the northeast Atlantic. Parcel back trajectories are used to account for the influence of previous meteorological conditions on cloud properties, whereas forward trajectories highlight the continued evolution of cloud state. Satellite retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS), Clouds and the Earth’s Radiant Energy System (CERES), Quick Scatterometer (QuikSCAT), and Special Sensor Microwave Imager (SSM/I) provide measurements of cloud properties as well as atmospheric state. These are complemented by meteorological fields from the ECMWF operational analysis model. Observations are composited by cloud fraction, and mean trajectories are used to evaluate differences between each composite. Systematic differences in meteorological conditions are found to extend through the full 144-h trajectories, confirming the need to account for cloud history in assessing impacts on cloud properties. Most striking among these is the observation that strong synoptic-scale divergence is associated with reduced cloud fraction 0–12 h later. Consistent with prior work, the authors find that cloud cover variations correlate best with variations in lower-tropospheric stability (LTS) and SST that are 36 h upwind. In addition, the authors find that free-tropospheric humidity, along-trajectory SST gradient, and surface fluxes all correlate best at lags ranging from 0 to 12 h. Overall, cloud cover appears to be most strongly impacted by variations in surface divergence over short time scales (<12 h) and by factors influencing boundary layer stratification over longer time scales (12–48 h). Notably, in the early part of the trajectories several of the above associations are reversed. In particular, when trajectories computed for small cloud fraction scenes are traced back 72 h, they are found to originate in conditions of weaker surface divergence and stronger surface fluxes relative to those computed for large cloud fraction scenes. Coupled with a drier boundary layer and warmer SSTs, this suggests that a decoupling of the boundary layer precedes cloud dissipation. The authors develop an approximation for the stratification of the boundary layer and find further evidence that stratification plays a role in differentiating between developing and dissipating clouds.

2018 ◽  
Vol 18 (24) ◽  
pp. 18187-18202 ◽  
Author(s):  
Yuqin Liu ◽  
Jiahua Zhang ◽  
Putian Zhou ◽  
Tao Lin ◽  
Juan Hong ◽  
...  

Abstract. Aerosol–cloud interaction (ACI) is examined using 10 years of data from the MODIS/Terra (morning orbit) and MODIS/Aqua (afternoon orbit) satellites. Aerosol optical depth (AOD) and cloud properties retrieved from both sensors are used to explore in a statistical sense the morning-to-afternoon variation of cloud properties in conditions with low and high AOD, over both land and ocean. The results show that the interaction between aerosol particles and clouds is more complex and of greater uncertainty over land than over ocean. The variation in d(Cloud_X), defined as the mean change in cloud property Cloud_X between the morning and afternoon overpasses in high-AOD conditions minus that in low-AOD conditions, is different over land and ocean. This applies to cloud droplet effective radius (CDR), cloud fraction (CF) and cloud top pressure (CTP), but not to cloud optical thickness (COT) and cloud liquid water path (CWP). Both COT and CWP increase over land and ocean after the time step, irrespective of the AOD. However, the initial AOD conditions can affect the amplitude of variation of COT and CWP. The effects of initial cloud fraction and meteorological conditions on the change in CF under low- and high-AOD conditions after the 3 h time step over land are also explored. Two cases are considered: (1) when the cloud cover increases and (2) when the cloud cover decreases. For both cases, we find that almost all values of d(CF) are positive, indicating that the variations of CF are larger in high AOD than that in low AOD after the 3 h time step. The results also show that a large increase in cloud fraction occurs when scenes experience large AOD and stronger upward motion of air parcels. Furthermore, the increase rate of cloud cover is larger for high AOD with increasing relative humidity (RH) when RH is larger than 20 %. We also find that a smaller increase in cloud fraction occurs when scenes experience larger AOD and larger initial cloud cover. Overall, the analysis of the diurnal variation of cloud properties provides a better understanding of aerosol–cloud interaction over land and ocean.


2018 ◽  
Author(s):  
Yuqin Liu ◽  
Jiahua Zhang ◽  
Putian Zhou ◽  
Tao Lin ◽  
Juan Hong ◽  
...  

Abstract. Aerosol-cloud interaction is examined using four years of data from the MODIS/Terra (morning orbit) and MODIS/Aqua (afternoon orbit) satellites. Aerosol optical depth (AOD) and cloud properties retrieved from both sensors are used to explore in a statistical sense the morning-to-afternoon variation of cloud properties in conditions with low and high AOD, over both land and ocean. The results show that the morning-to-afternoon variation of cloud properties during the 3 hours between the Terra and Aqua overpasses have similar patterns (increase or decrease) over land under both low and high AOD conditions. The variation in d(Cloud_X), defined as the mean change in cloud property Cloud_X between the morning and afternoon overpasses in high AOD conditions minus that in low AOD conditions, is different over land and ocean. This applies to cloud droplet effective radius (CDR), cloud fraction (CF) and cloud top pressure (CTP), but not to cloud optical thickness (COT) and cloud liquid water path (CWP). The effects of initial cloud fraction and meteorological conditions on the change in CF are also explored, showing that upward motion of air parcels can enhance the cloud cover much more when AOD is high than when it is low. In contrast, the increase of cloud cover with increasing relative humidity is much stronger in a relatively clean atmosphere with low AOD than in a more polluted atmosphere. Meanwhile, stable atmospheric conditions favour the development of a low cloud cover, especially when AOD is high. Overall, the analysis of the diurnal variation of cloud properties provides a better understanding of aerosol-cloud interaction over land and ocean.


2010 ◽  
Vol 10 (16) ◽  
pp. 7709-7722 ◽  
Author(s):  
G.-J. Roelofs ◽  
H. ten Brink ◽  
A. Kiendler-Scharr ◽  
G. de Leeuw ◽  
A. Mensah ◽  
...  

Abstract. In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the associated aerosol optical thickness (AOT) for the campaign period. Synoptic scale meteorology is represented realistically through nudging of the vorticity, the divergence, the temperature and the surface pressure. Simulated concentrations of aerosol sulfate and organics at the surface are generally within a factor of two from observed values. The monthly averaged AOT from the model is 0.33, about 20% larger than observed. For selected periods of the month with relatively dry and moist conditions discrepancies are approximately −30% and +15%, respectively. Discrepancies during the dry period are partly caused by inaccurate representation of boundary layer (BL) dynamics by the model affecting the simulated AOT. The model simulates too strong exchange between the BL and the free troposphere, resulting in weaker concentration gradients at the BL top than observed for aerosol and humidity, while upward mixing from the surface layers into the BL appears to be underestimated. The results indicate that beside aerosol sulfate and organics also aerosol ammonium and nitrate significantly contribute to aerosol water uptake. The simulated day-to-day variability of AOT follows synoptic scale advection of humidity rather than particle concentration. Even for relatively dry conditions AOT appears to be strongly influenced by the diurnal cycle of RH in the lower boundary layer, further enhanced by uptake and release of nitric acid and ammonia by aerosol water.


2021 ◽  
Author(s):  
Assia Arouf

<p>Clouds exert important effects on Earth's surface energy balance through their effects on longwave (LW) and shortwave (SW) radiation. Indeed, clouds radiatively warm the surface in the LW domain by emitting LW radiation back to the ground. The surface LW cloud radiative effect (CRE) quantifies this warming effect. To study the impact of clouds on the interanual natural climate variability, we need to observe them on a long time scale over all kinds of surfaces. The CALIPSO space lidar provides these observations by sampling the atmosphere along its track over all kinds of surfaces for over than 14 years (2006-2020).</p><p>In this work, we propose new estimates of the surface LW CRE from space-based lidar observations only. Indeed, we show from 1D atmospheric column radiative transfer calculations, that surface LW CRE at sea level linearly decreases with the cloud altitude. Thus, these computations allow to establish simple relationships between the surface LW CRE, and five cloud properties observed by the CALIPSO space lidar: the opaque cloud cover and altitude, the thin cloud cover, altitude, and emissivity. Over the 2008–2011, CALIPSO-based retrieval (27.7 W m<sup>-2</sup>) is 1.2 W m<sup>-2</sup> larger than the one derived from combined space radar, lidar, and radiometer observations. Over the 2008–2018 period, the global mean CALIPSO-based retrieval (27.5 W m<sup>-2</sup>) is 0.1 W m<sup>-2</sup> larger than the one derived from CERES space radiometer. Our estimates show that globally, opaque clouds warm the surface by 23.3 W m<sup>-2</sup> and thin clouds contribute only by 4.2 W m<sup>-2</sup>. At high latitudes North and South over oceans, the largest surface LW opaque CRE occurs in fall (40.4 W m<sup>-2</sup>, 31.6 W m<sup>-2</sup>) due to the formation of additional opaque low clouds after sea ice melting over a warmer ocean.</p><p>To quantify the cloud property that drives the temporal variations of the surface LW CRE, the surface LW CRE needs to be related by simple relationships to a finite number of cloud properties such as cloud opacity, cloud altitude and cloud cover. This study allows a decomposition and attribution approach of the surface LW CRE variations and shows that they are driven by the variations occurring in the opaque cloud properties. Moreover, opaque cloud cover drives over than 73% of global surface LW CRE interannual variations.</p>


2021 ◽  
Author(s):  
Raphaela Vogel ◽  
Sandrine Bony ◽  
Anna Lea Albright ◽  
Bjorn Stevens ◽  
Geet George ◽  
...  

<p>The trade-cumulus cloud feedback in climate models is mostly driven by changes in cloud-base cloudiness, which can largely be attributed to model differences in the strength of lower-tropospheric mixing. Using observations from the recent EUREC<sup>4</sup>A field campaign, we test the hypothesis that enhanced lower-tropospheric mixing dries the lower cloud layer and reduces near-base cloudiness. The convective mass flux at cloud base is used as a proxy for the strength of convective mixing and is estimated as the residual of the subcloud layer mass budget, which is derived from dropsondes intensively launched along a circle of ~200 km diameter. The cloud-base cloud fraction is measured with horizontally-pointing lidar and radar from an aircraft flying near cloud base within the circle area. Additional airborne, ground- and ship-based radar, lidar and in-situ measurements are used to estimate the total cloud cover, the surface fluxes and to validate the consistency of the approach.</p><p>Preliminary mass flux estimates have reasonable mean values of about 15 mm/s. 3- circle (i.e. 3h) averaged estimates range between 0-40 mm/s and reveal substantial day-to-day and daily variability. The day-to-day variability in the mass flux is mostly due to variability in the mesoscale vertical velocity, whereas the entrainment rate mostly explains variability on the daily timescale, consistent with previous large-eddy simulations. We find the mass flux to be positively correlated to both the cloud-base cloud fraction and the total cloud cover (R=0.55 and R~0.4, respectively). Other indicators of lower-tropospheric mixing due to convection and mesoscale circulations also suggest positive relationships between mixing and cloudiness. Implications of these analyses for testing the hypothesized mechanism of positive trade-cumulus cloud feedback will be discussed.</p>


2008 ◽  
Vol 47 (5) ◽  
pp. 1456-1466 ◽  
Author(s):  
Zhining Tao ◽  
Allen Williams ◽  
Ho-Chun Huang ◽  
Michael Caughey ◽  
Xin-Zhong Liang

Abstract Different cumulus schemes cause significant discrepancies in simulated precipitation, cloud cover, and temperature, which in turn lead to remarkable differences in simulated biogenic volatile organic compound (BVOC) emissions and surface ozone concentrations. As part of an effort to investigate the impact (and its uncertainty) of climate changes on U.S. air quality, this study evaluates the sensitivity of BVOC emissions and surface ozone concentrations to the Grell (GR) and Kain–Fritsch (KF) cumulus parameterizations. Overall, using the KF scheme yields less cloud cover, larger incident solar radiation, warmer surface temperature, and higher boundary layer height and hence generates more BVOC emissions than those using the GR scheme. As a result, the KF (versus GR) scheme produces more than 10 ppb of summer mean daily maximum 8-h ozone concentration over broad regions, resulting in a doubling of the number of high-ozone occurrences. The contributions of meteorological conditions versus BVOC emissions on regional ozone sensitivities to the choice of the cumulus scheme largely offset each other in the California and Texas regions, but the contrast in BVOC emissions dominates over that in the meteorological conditions for ozone differences in the Midwest and Northeast regions. The result demonstrates the necessity of considering the uncertainty of future ozone projections that are identified with alternative model physics configurations.


2018 ◽  
Author(s):  
Salomon Eliasson ◽  
Karl Göran Karlsson ◽  
Erik van Meijgaard ◽  
Jan Fokke Meirink ◽  
Martin Stengel ◽  
...  

Abstract. The Cloud_cci satellite simulator has been developed to enable comparisons between the Cloud_cci Climate Data Record (CDR) and climate models. The Cloud_cci simulator is applied here to the EC-Earth Global Climate Model as well as the RACMO Regional Climate Model. We demonstrate the importance of using a satellite simulator that emulates the retrieval process underlying the CDR as opposed to taking the model output directly. The impact of not sampling the model at the local overpass time of the polar-orbiting satellites used to make the dataset was shown to be large, yielding up to 100 % error in Liquid Water Path (LWP) simulations in certain regions. The simulator removes all clouds with optical thickness smaller than 0.2 to emulate the Cloud_cci CDR's lack of sensitivity to very thin clouds. This reduces Total Cloud Fraction (TCF) globally by about 10 % for EC-Earth and by a few percent for RACMO over Europe. Globally, compared to the Cloud_cci CDR, EC-Earth is shown to be mostly in agreement on the distribution of clouds and their height, but it generally underestimates the high cloud fraction associated with tropical convection regions, and overestimates the occurrence and height of clouds over the Sahara and the Arabian sub-continent. In RACMO, TCF is higher than retrieved over the northern Atlantic Ocean, but lower than retrieved over the European continent, where in addition the Cloud Top Pressure (CTP) is underestimated. The results shown here demonstrate again that a simulator is needed to make meaningful comparisons between modelled and retrieved cloud properties. It is promising to see that for (nearly) all cloud properties the simulator improves the agreement of the model with the satellite data.


2008 ◽  
Vol 21 (13) ◽  
pp. 3344-3358 ◽  
Author(s):  
Larry K. Berg ◽  
Evgueni I. Kassianov

Abstract Continental fair-weather cumuli exhibit significant diurnal, day-to-day, and year-to-year variability. This study describes the climatology of cloud macroscale properties, over the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. The diurnal cycle of cloud fraction, cloud-base height, cloud-top height, and cloud thickness were well defined. The cloud fraction reached its maximum value near 1400 central standard time. The average cloud-base height increased throughout the day, while the average cloud thickness decreased with time. In contrast to the other cloud properties, the average cloud-chord length remained nearly constant throughout the day. The sensitivity of the cloud properties to the year-to-year variability of precipitation and day-to-day changes in the height of the lifting condensation level (zLCL) and surface fluxes were compared. The cloud-base height was found to be sensitive to both the year, zLCL, and the surface fluxes of heat and moisture; the cloud thickness was found to be more sensitive to the year than to zLCL; the cloud fraction was sensitive to both the low-level moisture and the surface sensible heat flux; and cloud-chord length was sensitive to zLCL. Distributions of the cloud-chord length over the ACRF SGP site were computed and were well fit by an exponential distribution. The contribution to the total cloud fraction by clouds of each cloud-chord length was computed, and it was found that the clouds with a chord length of about 1 km contributed most to the observed cloud fraction. This result is similar to observations made with other remote sensing instruments or in modeling studies, but it is different from aircraft observations of the contribution to the total cloud fraction by clouds of different sizes.


2014 ◽  
Vol 27 (10) ◽  
pp. 3665-3682 ◽  
Author(s):  
Xiquan Dong ◽  
Baike Xi ◽  
Aaron Kennedy ◽  
Patrick Minnis ◽  
Robert Wood

Abstract A 19-month record of total and single-layered low (<3 km), middle (3–6 km), and high (>6 km) cloud fractions (CFs) and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties was generated from ground-based measurements at the Atmospheric Radiation Measurement Program (ARM) Azores site between June 2009 and December 2010. This is the most comprehensive dataset of marine cloud fraction and MBL cloud properties. The annual means of total CF and single-layered low, middle, and high CFs derived from ARM radar and lidar observations are 0.702, 0.271, 0.01, and 0.106, respectively. Greater total and single-layered high (>6 km) CFs occurred during the winter, whereas single-layered low (<3 km) CFs were more prominent during summer. Diurnal cycles for both total and low CFs were stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at ~1 km and a higher peak between 8 and 11 km during all seasons, except summer when only the low peak occurs. Persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, whereas the low pressure and moist air masses during winter generate more total and multilayered clouds, and deep frontal clouds associated with midlatitude cyclones. The seasonal variations of cloud heights and thickness are also associated with the seasonal synoptic patterns. The MBL cloud layer is low, warm, and thin with large liquid water path (LWP) and liquid water content (LWC) during summer, whereas during winter it is higher, colder, and thicker with reduced LWP and LWC. The cloud LWP and LWC values are greater at night than during daytime. The monthly mean daytime cloud droplet effective radius re values are nearly constant, while the daytime droplet number concentration Nd basically follows the LWC variation. There is a strong correlation between cloud condensation nuclei (CCN) concentration NCCN and Nd during January–May, probably due to the frequent low pressure systems because upward motion brings more surface CCN to cloud base (well-mixed boundary layer). During summer and autumn, the correlation between Nd and NCCN is not as strong as that during January–May because downward motion from high pressure systems is predominant. Compared to the compiled aircraft in situ measurements during the Atlantic Stratocumulus Transition Experiment (ASTEX), the cloud microphysical retrievals in this study agree well with historical aircraft data. Different air mass sources over the ARM Azores site have significant impacts on the cloud microphysical properties and surface CCN as demonstrated by great variability in NCCN and cloud microphysical properties during some months.


2009 ◽  
Vol 137 (1) ◽  
pp. 414-432 ◽  
Author(s):  
F. Couvreux ◽  
F. Guichard ◽  
P. H. Austin ◽  
F. Chen

Abstract Mesoscale water vapor heterogeneities in the boundary layer are studied within the context of the International H2O Project (IHOP_2002). A significant portion of the water vapor variability in the IHOP_2002 occurs at the mesoscale, with the spatial pattern and the magnitude of the variability changing from day to day. On 14 June 2002, an atypical mesoscale gradient is observed, which is the reverse of the climatological gradient over this area. The factors causing this water vapor variability are investigated using complementary platforms (e.g., aircraft, satellite, and in situ) and models. The impact of surface flux heterogeneities and atmospheric variability are evaluated separately using a 1D boundary layer model, which uses surface fluxes from the High-Resolution Land Data Assimilation System (HRLDAS) and early-morning atmospheric temperature and moisture profiles from a mesoscale model. This methodology, based on the use of robust modeling components, allows the authors to tackle the question of the nature of the observed mesoscale variability. The impact of horizontal advection is inferred from a careful analysis of available observations. By isolating the individual contributions to mesoscale water vapor variability, it is shown that the observed moisture variability cannot be explained by a single process, but rather involves a combination of different factors: the boundary layer height, which is strongly controlled by the surface buoyancy flux, the surface latent heat flux, the early-morning heterogeneity of the atmosphere, horizontal advection, and the radiative impact of clouds.


Sign in / Sign up

Export Citation Format

Share Document