cumulus schemes
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 616
Author(s):  
Giuseppe Castorina ◽  
Maria Teresa Caccamo ◽  
Franco Colombo ◽  
Salvatore Magazù

Numerical weather predictions (NWP) play a fundamental role in air quality management. The transport and deposition of all the pollutants (natural and/or anthropogenic) present in the atmosphere are strongly influenced by meteorological conditions such as, for example, precipitation and winds. Furthermore, the presence of particulate matter in the atmosphere favors the physical processes of nucleation of the hydrometeors, thus increasing the risk of even extreme weather events. In this framework of reference, the present work aimed to improve the quality of weather forecasts related to extreme events through the optimization of the weather research and forecasting (WRF) model. For this purpose, the simulation results obtained using the WRF model, where physical parametrizations of the cumulus scheme can be optimized, are reported. As a case study, we considered the extreme meteorological event recorded on 25 November 2016, which affected the whole territory of Sicily and, in particular, the area of Sciacca (Agrigento). In order, to evaluate the performance of the proposed approach, we compared the WRF model outputs with data obtained by a network of radar and weather stations. The comparison was performed through statistical methods on the basis of a “contingency table”, which allowed for ascertaining the best suited physical parametrizations able to reproduce this event.


2018 ◽  
Vol 31 (14) ◽  
pp. 5559-5579 ◽  
Author(s):  
Joshua-Xiouhua Fu ◽  
Wanqiu Wang ◽  
Yuejian Zhu ◽  
Hong-Li Ren ◽  
Xiaolong Jia ◽  
...  

Six sets of hindcasts conducted with the NCEP GFS have been used to study the SST-feedback processes and assess the relative contributions of atmospheric internal dynamics and SST feedback on the October and November MJO events observed during the DYNAMO IOP (Oct- and Nov-MJO). The hindcasts are carried out with three variants of the Arakawa–Shubert cumulus scheme under TMI and climatological SST conditions. The positive intraseasonal SST anomaly along with its convergent Laplacian produces systematic surface disturbances, which include enhanced surface convergence, evaporation, and equivalent potential temperature no matter which cumulus scheme is used. Whether these surface disturbances can grow into a robust response of MJO convection depends on the characteristics of the cumulus schemes used. If the cumulus scheme is able to amplify the SST-initiated surface disturbances through a strong upward–downward feedback, the model is able to produce a robust MJO convection response to the underlying SST anomaly; otherwise, the model will not produce any significant SST feedback. A new method has been developed to quantify the “potential” and “practical” contributions of the atmospheric internal dynamics and SST feedback on the MJOs. The present results suggest that, potentially, the SST feedback could have larger contributions than the atmospheric internal dynamics. Practically, the contributions to the Oct- and Nov-MJO events are, respectively, dominated by atmospheric internal dynamics and SST feedback. Averaged over the entire period, the contributions from the atmospheric internal dynamics and SST feedback are about half and half.


Author(s):  
Dinesh Kumar ◽  
U. C. Mohanty ◽  
Krishan Kumar

The cloud processes play an important role in all forms of precipitation. Its proper representation is one of the challenging tasks in mesoscale numerical simulation. Studies have revealed that mesoscale feature require proper initialization which may likely to improve the convective system rainfall forecasts. Understanding the precipitation process, model initial condition accuracy and resolved/sub grid-scale precipitation processes representation, are the important areas which needed to improve in order to represent the mesoscale features properly. Various attempts have been done in order to improve the model performance through grid resolution, physical parameterizations, etc. But it is the physical parameterizations which provide a convective atmosphere for the development and intensification of convective events. Further, physical parameterizations consist of cumulus convection, surface fluxes of heat, moisture, momentum, and vertical mixing in the planetary boundary layer (PBL). How PBL and Cumulus schemes capture the evolution of thunderstorm have been analysed by taking thunderstorm cases occurred over Kolkata, India in the year 2011. PBL and cumulus schemes were customized for WSM-6 microphysics because WSM series has been widely used in operational forecast. Results have shown that KF (PBL scheme) and WSM-6 (Cumulus Scheme) have reproduced the evolution of surface variable such as CAPE, temperature and rainfall very much like observation. Further, KF and WSM-6 scheme also provided the increased moisture availability in the lower atmosphere which was taken to higher level by strong vertical velocities providing a platform to initiate a thunderstorm much better. Overestimation of rain in WSM-6 occurs primarily because of occurrence of melting and freezing process within a deeper layer in WSM-6 scheme. These Schemes have reproduced the spatial pattern and peak rainfall coverage closer to TRMM observation. It is the the combination of WSM-6, and KF schemes which have preformed reasonably well to reproduce the right atmospheric condition for a thunderstorm leading to improved spatial and temporal rainfall over the study domain. Thus the parameterization schemes of WMS-6 and KF have shown significant improvement by capturing the location, intensity and surface meteorological parameters closer to observed details.


Author(s):  
Dinesh Kumar ◽  
U. C. Mohanty ◽  
Krishan Kumar

The cloud processes play an important role in all forms of precipitation. Its proper representation is one of the challenging tasks in mesoscale numerical simulation. Studies have revealed that mesoscale feature require proper initialization which may likely to improve the convective system rainfall forecasts. Understanding the precipitation process, model initial condition accuracy and resolved/sub grid-scale precipitation processes representation, are the important areas which needed to improve in order to represent the mesoscale features properly. Various attempts have been done in order to improve the model performance through grid resolution, physical parameterizations, etc. But it is the physical parameterizations which provide a convective atmosphere for the development and intensification of convective events. Further, physical parameterizations consist of cumulus convection, surface fluxes of heat, moisture, momentum, and vertical mixing in the planetary boundary layer (PBL). How PBL and Cumulus schemes capture the evolution of thunderstorm have been analysed by taking thunderstorm cases occurred over Kolkata, India in the year 2011. PBL and cumulus schemes were customized for WSM-6 microphysics because WSM series has been widely used in operational forecast. Results have shown that KF (PBL scheme) and WSM-6 (Cumulus Scheme) have reproduced the evolution of surface variable such as CAPE, temperature and rainfall very much like observation. Further, KF and WSM-6 scheme also provided the increased moisture availability in the lower atmosphere which was taken to higher level by strong vertical velocities providing a platform to initiate a thunderstorm much better. Overestimation of rain in WSM-6 occurs primarily because of occurrence of melting and freezing process within a deeper layer in WSM-6 scheme. These Schemes have reproduced the spatial pattern and peak rainfall coverage closer to TRMM observation. It is the the combination of WSM-6, and KF schemes which have preformed reasonably well to reproduce the right atmospheric condition for a thunderstorm leading to improved spatial and temporal rainfall over the study domain. Thus the parameterization schemes of WMS-6 and KF have shown significant improvement by capturing the location, intensity and surface meteorological parameters closer to observed details.


2012 ◽  
Vol 27 (4) ◽  
pp. 1003-1016 ◽  
Author(s):  
Nasrin Nasrollahi ◽  
Amir AghaKouchak ◽  
Jialun Li ◽  
Xiaogang Gao ◽  
Kuolin Hsu ◽  
...  

Abstract Numerical weather prediction models play a major role in weather forecasting, especially in cases of extreme events. The Weather Research and Forecasting Model (WRF), among others, is extensively used for both research and practical applications. Previous studies have highlighted the sensitivity of this model to microphysics and cumulus schemes. This study investigated the performance of the WRF in forecasting precipitation, hurricane track, and landfall time using various microphysics and cumulus schemes. A total of 20 combinations of microphysics and cumulus schemes were used, and the model outputs were validated against ground-based observations. While the choice of microphysics and cumulus schemes can significantly impact model output, it is not the case that any single combination can be considered “ideal” for modeling all characteristics of a hurricane, including precipitation amount, areal extent, hurricane track, and the time of landfall. For example, the model’s ability to simulate precipitation (with the least total bias) is best achieved using Betts–Miller–Janjić (BMJ) cumulus parameterization in combination with the WRF single-moment five-class microphysics scheme (WSM5). It was determined that the WSM5–BMJ, WSM3 (the three-class version of the WSM scheme)–BMJ, and Ferrier microphysics in combination with the Grell–Devenyi cumulus scheme were the best combinations for simulation of the landfall time. However, the hurricane track was best estimated using the Lin et al. and Kessler microphysics options with BMJ cumulus parameterization. Contrary to previous studies, these results indicated that the use of cumulus schemes improves model outputs when the grid size is smaller than 10 km. However, it was found that many of the differences between parameterization schemes may be well within the uncertainty of the measurements.


2009 ◽  
Vol 3 (2) ◽  
pp. 248-257 ◽  
Author(s):  
Shuyan Liu ◽  
Wei Gao ◽  
Min Xu ◽  
Xueyuan Wang ◽  
Xin-Zhong Liang

Sign in / Sign up

Export Citation Format

Share Document