scholarly journals Seasonal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N

2010 ◽  
Vol 23 (21) ◽  
pp. 5678-5698 ◽  
Author(s):  
T. Kanzow ◽  
S. A. Cunningham ◽  
W. E. Johns ◽  
J. J-M. Hirschi ◽  
J. Marotzke ◽  
...  

Abstract The Atlantic meridional overturning circulation (AMOC) makes the strongest oceanic contribution to the meridional redistribution of heat. Here, an observation-based, 48-month-long time series of the vertical structure and strength of the AMOC at 26.5°N is presented. From April 2004 to April 2008, the AMOC had a mean strength of 18.7 ± 2.1 Sv (1 Sv ≡ 106 m3 s−1) with fluctuations of 4.8 Sv rms. The best guess of the peak-to-peak amplitude of the AMOC seasonal cycle is 6.7 Sv, with a maximum strength in autumn and a minimum in spring. While seasonality in the AMOC was commonly thought to be dominated by the northward Ekman transport, this study reveals that fluctuations of the geostrophic midocean and Gulf Stream transports of 2.2 and 1.7 Sv rms, respectively, are substantially larger than those of the Ekman component (1.2 Sv rms). A simple model based on linear dynamics suggests that the seasonal cycle is dominated by wind stress curl forcing at the eastern boundary of the Atlantic. Seasonal geostrophic AMOC anomalies might represent an important and previously underestimated component of meridional transport and storage of heat in the subtropical North Atlantic. There is evidence that the seasonal cycle observed here is representative of much longer intervals. Previously, hydrographic snapshot estimates between 1957 and 2004 had suggested a long-term decline of the AMOC by 8 Sv. This study suggests that aliasing of seasonal AMOC anomalies might have accounted for a large part of the inferred slowdown.

2014 ◽  
Vol 44 (6) ◽  
pp. 1541-1562 ◽  
Author(s):  
Jian Zhao ◽  
William Johns

Abstract The dynamical processes governing the seasonal cycle of the Atlantic meridional overturning circulation (AMOC) are studied using a variety of models, ranging from a simple forced Rossby wave model to an eddy-resolving ocean general circulation model. The AMOC variability is decomposed into Ekman and geostrophic transport components, which reveal that the seasonality of the AMOC is determined by both components in the extratropics and dominated by the Ekman transport in the tropics. The physics governing the seasonal fluctuations of the AMOC are explored in detail at three latitudes (26.5°N, 6°N, and 34.5°S). While the Ekman transport is directly related to zonal wind stress seasonality, the comparison between different numerical models shows that the geostrophic transport involves a complex oceanic adjustment to the wind forcing. The oceanic adjustment is further evaluated by separating the zonally integrated geostrophic transport into eastern and western boundary currents and interior flows. The results indicate that the seasonal AMOC cycle in the extratropics is controlled mainly by local boundary effects, where either the western or eastern boundary can be dominant at different latitudes, while in the northern tropics it is the interior flow and its lagged compensation by the western boundary current that determine the seasonal AMOC variability.


Ocean Science ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 475-490 ◽  
Author(s):  
M. P. Chidichimo ◽  
T. Kanzow ◽  
S. A. Cunningham ◽  
W. E. Johns ◽  
J. Marotzke

Abstract. We study the contribution of eastern-boundary density variations to sub-seasonal and seasonal anomalies of the strength and vertical structure of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5° N, by means of the RAPID/MOCHA mooring array between April 2004 and October 2007. The major density anomalies are found in the upper 500 m, and they are often coherent down to 1400 m. The densities have 13-day fluctuations that are apparent down to 3500 m. The two strategies for measuring eastern-boundary density – a tall offshore mooring (EB1) and an array of moorings on the continental slope (EBH) – show little correspondence in terms of amplitude, vertical structure, and frequency distribution of the resulting basin-wide integrated transport fluctuations, implying that there are significant transport contributions between EB1 and EBH. Contrary to the original planning, measurements from EB1 cannot serve as backup or replacement for EBH: density needs to be measured directly at the continental slope to compute the full-basin density gradient. Fluctuations in density at EBH generate transport variability of 2 Sv rms in the AMOC, while the overall AMOC variability is 4.8 Sv rms. There is a pronounced deep-reaching seasonal cycle in density at the eastern boundary, which is apparent between 100 m and 1400 m, with maximum positive anomalies in spring and maximum negative anomalies in autumn. These changes drive anomalous southward upper mid-ocean flow in spring, implying maximum reduction of the AMOC, and vice-versa in autumn. The amplitude of the seasonal cycle of the AMOC arising from the eastern-boundary densities is 5.2 Sv peak-to-peak, dominating the 6.7 Sv peak-to-peak seasonal cycle of the total AMOC. Our analysis suggests that the seasonal cycle in density may be forced by the strong near-coastal seasonal cycle in wind stress curl.


2009 ◽  
Vol 6 (3) ◽  
pp. 2507-2553
Author(s):  
M. P. Chidichimo ◽  
T. Kanzow ◽  
S. A. Cunningham ◽  
J. Marotzke

Abstract. We study the contribution of eastern-boundary density variations to sub-seasonal and seasonal anomalies of the strength and vertical structure of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5° N, by means of the RAPID/MOCHA mooring array between April 2004 and October 2007. The major density anomalies are found in the upper 500 m, and they are often coherent down to 1400 m. The densities have 13-day fluctuations that are apparent down to 3500 m. The two strategies for measuring eastern-boundary density – a tall offshore mooring (EB1) and an array of moorings on the continental slope (EBH) – show little correspondence in terms of amplitude, vertical structure, and frequency distribution of the resulting basin-wide integrated transport fluctuations, implying that there are significant transport contributions between EB1 and EBH. Contrary to the original planning, measurements from EB1 cannot serve as backup or replacement for EBH: density needs to be measured directly at the continental slope to compute the full-basin density gradient. Fluctuations in density at EBH generate transport variability of 2 Sv rms in the AMOC, while the overall AMOC variability is 4.9 Sv rms. There is a pronounced deep-reaching seasonal cycle in density at the eastern boundary, which is apparent between 100 m and 1400 m, with maximum positive anomalies in spring and maximum negative anomalies in autumn. These changes drive anomalous southward upper mid-ocean flow in spring, implying maximum reduction of the AMOC, and vice-versa in autumn. The amplitude of the seasonal cycle of the AMOC arising from the eastern-boundary densities is 5.2 Sv peak-to-peak, dominating the 7.0 Sv peak-to-peak seasonal cycle of the total AMOC. Our analysis suggests that the seasonal cycle in density may be forced by the strong near-coastal seasonal cycle in wind stress curl.


2014 ◽  
Vol 27 (17) ◽  
pp. 6439-6455 ◽  
Author(s):  
A. Duchez ◽  
J. J.-M. Hirschi ◽  
S. A. Cunningham ◽  
A. T. Blaker ◽  
H. L. Bryden ◽  
...  

Abstract The Atlantic meridional overturning circulation (AMOC) has received considerable attention, motivated by its major role in the global climate system. Observations of AMOC strength at 26°N made by the Rapid Climate Change (RAPID) array provide the best current estimate of the state of the AMOC. The period 2004–11 when RAPID AMOC is available is too short to assess decadal variability of the AMOC. This modeling study introduces a new AMOC index (called AMOCSV) at 26°N that combines the Florida Straits transport, the Ekman transport, and the southward geostrophic Sverdrup transport. The main hypothesis in this study is that the upper midocean geostrophic transport calculated using the RAPID array is also wind-driven and can be approximated by the geostrophic Sverdrup transport at interannual and longer time scales. This index is expected to reflect variations in the AMOC at interannual to decadal time scales. This estimate of the surface branch of the AMOC can be constructed as long as reliable measurements are available for the Gulf Stream and for wind stress. To test the reliability of the AMOCSV on interannual and longer time scales, two different numerical simulations are used: a forced and a coupled simulation. Using these simulations the AMOCSV captures a substantial fraction of the AMOC variability and is in good agreement with the AMOC transport at 26°N on both interannual and decadal time scales. These results indicate that it might be possible to extend the observation-based AMOC at 26°N back to the 1980s.


Ocean Science ◽  
2014 ◽  
Vol 10 (1) ◽  
pp. 29-38 ◽  
Author(s):  
D. A. Smeed ◽  
G. D. McCarthy ◽  
S. A. Cunningham ◽  
E. Frajka-Williams ◽  
D. Rayner ◽  
...  

Abstract. The Atlantic meridional overturning circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable-based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April 2008 to March 2012, the AMOC was an average of 2.7 Sv (1 Sv = 106 m3 s−1) weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the southward flow above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of lower North Atlantic deep water below 3000 m. The transport of lower North Atlantic deep water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year).


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Rong Zhang ◽  
Matthew Thomas

AbstractThe Greenland Sea is often viewed as the northern terminus of the Atlantic Meridional Overturning Circulation. It has also been proposed that the shutdown of open-ocean deep convection in the Labrador or Greenland Seas would substantially weaken the Atlantic Meridional Overturning Circulation. Here we analyze Robust Diagnostic Calculations conducted in a high-resolution global coupled climate model constrained by observed hydrographic climatology to provide a holistic picture of the long-term mean Atlantic Overturning Circulation at northern high latitudes. Our results suggest that the Arctic Ocean, not the Greenland Sea, is the northern terminus of the mean Atlantic Overturning Circulation; open-ocean deep convection, in either the Labrador or Greenland Seas, contributes minimally to the mean Atlantic Overturning Circulation, hence it would not necessarily be substantially weakened by a shutdown of open-ocean deep convection; horizontal circulation across sloping isopycnals contributes substantially (more than 40%) to the maximum mean northeastern subpolar Atlantic Overturning Circulation.


2013 ◽  
Vol 10 (5) ◽  
pp. 1619-1645 ◽  
Author(s):  
D. A. Smeed ◽  
G. McCarthy ◽  
S. A. Cunningham ◽  
E. Frajka-Williams ◽  
D. Rayner ◽  
...  

Abstract. The Atlantic Meridional Overturning Circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April~2008 to March 2012 the AMOC was an average of 2.7 Sv weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the subtropical gyre above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of Lower North Atlantic Deep Water below 3000 m. The transport of Lower North Atlantic Deep Water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year).


Ocean Science ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 589-616 ◽  
Author(s):  
Yao Fu ◽  
Johannes Karstensen ◽  
Peter Brandt

Abstract. The Atlantic Meridional Overturning Circulation (AMOC) is analyzed by applying a box inverse model to hydrographic data from transatlantic sections along 14.5∘ N, occupied in 1989 and 2013, and along 24.5∘ N, occupied in 1992 and 2015. Direct comparison of water mass properties among the different realizations at the respective latitudes shows that the Antarctic Intermediate Water (AAIW) became warmer and saltier at 14.5∘ N, and the densest Antarctic Bottom Water became lighter, while the North Atlantic Deep Water freshened at both latitudes. The inverse solution shows that the intermediate layer transport at 14.5∘ N was also markedly weaker in 2013 than in 1989, indicating that the AAIW property changes at this latitude may be related to changes in the circulation. The inverse solution was validated using the RAPID and MOVE array data, and the GECCO2 ocean state estimate. Comparison among these datasets indicates that the AMOC has not significantly weakened over the past 2 decades at both latitudes. Sensitivity tests of the inverse solution suggest that the overturning structure and heat transport across the 14.5∘ N section are sensitive to the Ekman transport, while freshwater transport is sensitive to the transport-weighted salinity at the western boundary.


Sign in / Sign up

Export Citation Format

Share Document