scholarly journals Considerations in the Selection of Global Climate Models for Regional Climate Projections: The Arctic as a Case Study*

2011 ◽  
Vol 24 (6) ◽  
pp. 1583-1597 ◽  
Author(s):  
James E. Overland ◽  
Muyin Wang ◽  
Nicholas A. Bond ◽  
John E. Walsh ◽  
Vladimir M. Kattsov ◽  
...  

Abstract Climate projections at regional scales are in increased demand from management agencies and other stakeholders. While global atmosphere–ocean climate models provide credible quantitative estimates of future climate at continental scales and above, individual model performance varies for different regions, variables, and evaluation metrics—a less than satisfying situation. Using the high-latitude Northern Hemisphere as a focus, the authors assess strategies for providing regional projections based on global climate models. Starting with a set of model results obtained from an “ensemble of opportunity,” the core of this procedure is to retain a subset of models through comparisons of model simulations with observations at both continental and regional scales. The exercise is more one of model culling than model selection. The continental-scale evaluation is a check on the large-scale climate physics of the models, and the regional-scale evaluation emphasizes variables of ecological or societal relevance. An additional consideration is given to the comprehensiveness of processes included in the models. In many but not all applications, different results are obtained from a reduced set of models compared to relying on the simple mean of all available models. For example, in the Arctic the top-performing models tend to be more sensitive to greenhouse forcing than the poorer-performing models. Because of the mostly unexplained inconsistencies in model performance under different selection criteria, simple and transparent evaluation methods are favored. The use of a single model is not recommended. For some applications, no model may be able to provide a suitable regional projection. The use of model evaluation strategies, as opposed to relying on simple averages of ensembles of opportunity, should be part of future synthesis activities such as the upcoming Fifth Assessment Report of the Intergovernmental Panel on Climate Change.


2015 ◽  
Vol 113 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Donatella Zona ◽  
Beniamino Gioli ◽  
Róisín Commane ◽  
Jakob Lindaas ◽  
Steven C. Wofsy ◽  
...  

Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the “zero curtain” period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y−1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.



Author(s):  
Douglas Maraun

Global climate models are our main tool to generate quantitative climate projections, but these models do not resolve the effects of complex topography, regional scale atmospheric processes and small-scale extreme events. To understand potential regional climatic changes, and to provide information for regional-scale impact modeling and adaptation planning, downscaling approaches have been developed. Regional climate change modeling, even though it is still a matter of basic research and questioned by many researchers, is urged to provide operational results. One major downscaling class is statistical downscaling, which exploits empirical relationships between larger-scale and local weather. The main statistical downscaling approaches are perfect prog (often referred to as empirical statistical downscaling), model output statistics (which is typically some sort of bias correction), and weather generators. Statistical downscaling complements or adds to dynamical downscaling and is useful to generate user-tailored local-scale information, or to efficiently generate regional scale information about mean climatic changes from large global climate model ensembles. Further research is needed to assess to what extent the assumptions underlying statistical downscaling are met in typical applications, and to develop new methods for generating spatially coherent projections, and for including process-understanding in bias correction. The increasing resolution of global climate models will improve the representation of downscaling predictors and will, therefore, make downscaling an even more feasible approach that will still be required to tailor information for users.



Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1245
Author(s):  
Frank Kreienkamp ◽  
Philip Lorenz ◽  
Tobias Geiger

Climate modelling output that was provided under the latest Coupled Model Intercomparison Project (CMIP6) shows significant changes in model-specific Equilibrium Climate Sensitivity (ECS) as compared to CMIP5. The newer versions of many Global Climate Models (GCMs) report higher ECS values that result in stronger global warming than previously estimated. At the same time, the multi-GCM spread of ECS is significantly larger than under CMIP5. Here, we analyse how the differences between CMIP5 and CMIP6 affect climate projections for Germany. We use the statistical-empirical downscaling method EPISODES in order to downscale GCM data for the scenario pairs RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5. We use data sets of the GCMs CanESM, EC-Earth, MPI-ESM, and NorESM. The results show that the GCM-specific changes in the ECS also have an impact at the regional scale. While the temperature signal under regional climate change remains comparable for both CMIP generations in the MPI-ESM chain, the temperature signal increases by up to 3 °C for the RCP8.5/SSP5-8.5 scenario pair in the EC-Earth chain. Changes in precipitation are less pronounced and they only show notable differences at the seasonal scale. The reported changes in the climate signal will have direct consequences for society. Climate change impacts previously projected for the high-emission RCP8.5 scenario might occur equally under the new SSP2-4.5 scenario.



Author(s):  
Hudaverdi Gurkan ◽  
Vakhtang Shelia ◽  
Nilgun Bayraktar ◽  
Y. Ersoy Yildirim ◽  
Nebi Yesilekin ◽  
...  

Abstract The impact of climate change on agricultural productivity is difficult to assess. However, determining the possible effects of climate change is an absolute necessity for planning by decision-makers. The aim of the study was the evaluation of the CSM-CROPGRO-Sunflower model of DSSAT4.7 and the assessment of impact of climate change on sunflower yield under future climate projections. For this purpose, a 2-year sunflower field experiment was conducted under semi-arid conditions in the Konya province of Turkey. Rainfed and irrigated treatments were used for model analysis. For the assessment of impact of climate change, three global climate models and two representative concentration pathways, i.e. 4.5 and 8.5 were selected. The evaluation of the model showed that the model was able to simulate yield reasonably well, with normalized root mean square error of 1.3% for the irrigated treatment and 17.7% for the rainfed treatment, a d-index of 0.98 and a modelling efficiency of 0.93 for the overall model performance. For the climate change scenarios, the model predicted that yield will decrease in a range of 2.9–39.6% under rainfed conditions and will increase in a range of 7.4–38.5% under irrigated conditions. Results suggest that temperature increases due to climate change will cause a shortening of plant growth cycles. Projection results also confirmed that increasing temperatures due to climate change will cause an increase in sunflower water requirements in the future. Thus, the results reveal the necessity to apply adequate water management strategies for adaptation to climate change for sunflower production.



2012 ◽  
Vol 6 (5) ◽  
pp. 3963-3998 ◽  
Author(s):  
T. S. Rogers ◽  
J. E. Walsh ◽  
T. S. Rupp ◽  
L. W. Brigham ◽  
M. Sfraga

Abstract. There is an emerging need for regional applications of sea ice projections to provide more accuracy and greater detail to scientists, national, state and local planners, and other stakeholders. The present study offers a prototype for a comprehensive, interdisciplinary study to bridge observational data, climate model simulations, and user needs. The study's first component is an observationally-based evaluation of Arctic sea ice trends during 1980–2008, with an emphasis on seasonal and regional differences relative to the overall pan-Arctic trend. Regional sea ice los has varied, with a significantly larger decline of winter maximum (January–March) extent in the Atlantic region than in other sectors. A lead-lag regression analysis of Atlantic sea ice extent and ocean temperatures indicates that reduced sea ice extent is associated with increased Atlantic Ocean temperatures. Correlations between the two variables are greater when ocean temperatures lag rather than lead sea ice. The performance of 13 global climate models is evaluated using three metrics to compare sea ice simulations with the observed record. We rank models over the pan-Arctic domain and regional quadrants, and synthesize model performance across several different studies. The best performing models project reduced ice cover across key access routes in the Arctic through 2100, with a lengthening of seasons for marine operations by 1–3 months. This assessment suggests that the Northwest and Northeast Passages hold potential for enhanced marine access to the Arctic in the future, including shipping and resource development opportunities.



2020 ◽  
Vol 162 (2) ◽  
pp. 645-665
Author(s):  
Melissa S. Bukovsky ◽  
Linda O. Mearns

Abstract The climate sensitivity of global climate models (GCMs) strongly influences projected climate change due to increased atmospheric carbon dioxide. Reasonably, the climate sensitivity of a GCM may be expected to affect dynamically downscaled projections. However, there has been little examination of the effect of the climate sensitivity of GCMs on regional climate model (RCM) ensembles. Therefore, we present projections of temperature and precipitation from the ensemble of projections produced as a part of the North American branch of the international Coordinated Regional Downscaling Experiment (NA-CORDEX) in the context of their relationship to the climate sensitivity of their parent GCMs. NA-CORDEX simulations were produced at 50-km and 25-km resolutions with multiple RCMs which downscaled multiple GCMs that spanned nearly the full range of climate sensitivity available in the CMIP5 archive. We show that climate sensitivity is a very important source of spread in the NA-CORDEX ensemble, particularly for temperature. Temperature projections correlate with driving GCM climate sensitivity annually and seasonally across North America not only at a continental scale but also at a local-to-regional scale. Importantly, the spread in temperature projections would be reduced if only low, mid, or high climate sensitivity simulations were considered, or if only the ensemble mean were considered. Precipitation projections correlate with climate sensitivity, but only at a continental scale during the cold season, due to the increasing influence of other processes at finer scales. Additionally, it is shown that the RCMs do alter the projection space sampled by their driving GCMs.



2013 ◽  
Vol 7 (1) ◽  
pp. 321-332 ◽  
Author(s):  
T. S. Rogers ◽  
J. E. Walsh ◽  
T. S. Rupp ◽  
L. W. Brigham ◽  
M. Sfraga

Abstract. There is an emerging need for regional applications of sea ice projections to provide more accuracy and greater detail to scientists, national, state and local planners, and other stakeholders. The present study offers a prototype for a comprehensive, interdisciplinary study to bridge observational data, climate model simulations, and user needs. The study's first component is an observationally based evaluation of Arctic sea ice trends during 1980–2008, with an emphasis on seasonal and regional differences relative to the overall pan-Arctic trend. Regional sea ice loss has varied, with a significantly larger decline of winter maximum (January–March) extent in the Atlantic region than in other sectors. A lead–lag regression analysis of Atlantic sea ice extent and ocean temperatures indicates that reduced sea ice extent is associated with increased Atlantic Ocean temperatures. Correlations between the two variables are greater when ocean temperatures lag rather than lead sea ice. The performance of 13 global climate models is evaluated using three metrics to compare sea ice simulations with the observed record. We rank models over the pan-Arctic domain and regional quadrants and synthesize model performance across several different studies. The best performing models project reduced ice cover across key access routes in the Arctic through 2100, with a lengthening of seasons for marine operations by 1–3 months. This assessment suggests that the Northwest and Northeast Passages hold potential for enhanced marine access to the Arctic in the future, including shipping and resource development opportunities.



2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David Docquier ◽  
Torben Koenigk

AbstractArctic sea ice has been retreating at an accelerating pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) and select models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to lower Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of future Arctic sea-ice loss when including all CMIP6 models.



Climate ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
Ge Peng ◽  
Jessica L. Matthews ◽  
Muyin Wang ◽  
Russell Vose ◽  
Liqiang Sun

The prospect of an ice-free Arctic in our near future due to the rapid and accelerated Arctic sea ice decline has brought about the urgent need for reliable projections of the first ice-free Arctic summer year (FIASY). Together with up-to-date observations and characterizations of Arctic ice state, they are essential to business strategic planning, climate adaptation, and risk mitigation. In this study, the monthly Arctic sea ice extents from 12 global climate models are utilized to obtain projected FIASYs and their dependency on different emission scenarios, as well as to examine the nature of the ice retreat projections. The average value of model-projected FIASYs is 2054/2042, with a spread of 74/42 years for the medium/high emission scenarios, respectively. The earliest FIASY is projected to occur in year 2023, which may not be realistic, for both scenarios. The sensitivity of individual climate models to scenarios in projecting FIASYs is very model-dependent. The nature of model-projected Arctic sea ice coverage changes is shown to be primarily linear. FIASY values predicted by six commonly used statistical models that were curve-fitted with the first 30 years of climate projections (2006–2035), on other hand, show a preferred range of 2030–2040, with a distinct peak at 2034 for both scenarios, which is more comparable with those from previous studies.



2014 ◽  
Vol 8 (1) ◽  
pp. 1383-1406 ◽  
Author(s):  
P. J. Hezel ◽  
T. Fichefet ◽  
F. Massonnet

Abstract. Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the Radiative Concentration Pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all 9 models. RCP4.5 demonstrates continued summer Arctic sea ice decline due to continued warming on longer time scales. These two scenarios imply that summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in 7 of 9 models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and reversibility of declines in seasonal sea ice extent.



Sign in / Sign up

Export Citation Format

Share Document