Interannual Variations of Arctic Cloud Types in Relation to Sea Ice

2010 ◽  
Vol 23 (15) ◽  
pp. 4216-4232 ◽  
Author(s):  
Ryan Eastman ◽  
Stephen G. Warren

Abstract Sea ice extent and thickness may be affected by cloud changes, and sea ice changes may in turn impart changes to cloud cover. Different types of clouds have different effects on sea ice. Visual cloud reports from land and ocean regions of the Arctic are analyzed here for interannual variations of total cloud cover and nine cloud types, and their relation to sea ice. Over the high Arctic, cloud cover shows a distinct seasonal cycle dominated by low stratiform clouds, which are much more common in summer than winter. Interannual variations of cloud amounts over the Arctic Ocean show significant correlations with surface air temperature, total sea ice extent, and the Arctic Oscillation. Low ice extent in September is generally preceded by a summer with decreased middle and precipitating clouds. Following a low-ice September there is enhanced low cloud cover in autumn. Total cloud cover appears to be greater throughout the year during low-ice years. Multidecadal trends from surface observations over the Arctic Ocean show increasing cloud cover, which may promote ice loss by longwave radiative forcing. Trends are positive in all seasons, but are most significant during spring and autumn, when cloud cover is positively correlated with surface air temperature. The coverage of summertime precipitating clouds has been decreasing over the Arctic Ocean, which may promote ice loss.

2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2018 ◽  
Vol 44 (2) ◽  
pp. 659 ◽  
Author(s):  
M. Vázquez ◽  
R. Nieto ◽  
A. Drumond ◽  
L. Gimeno

The Arctic Ocean has suffered extreme reductions in sea ice in recent decades, and these observed changes suggest implications in terms of moisture transport. The Arctic region is a net sink of moisture in terms of the total hydrological cycle, however, its role as a moisture source for specific regions has not been extensively studied. Our results show that 80% of the moisture supply from the Arctic contributes to precipitation over itself, representing about 8% of the global moisture supply to the Arctic, the remaining 20% is distributed in the surrounding. A reduction in the sea ice extent could make the Arctic Ocean a slightly higher source of moisture to itself or to the surrounding areas. The analysis of the areas affected by Arctic moisture transport is important for establishing those areas vulnerable to change in a framework of a growing sea ice decline. To this end, the Lagrangian model FLEXPART was used in this work to establish the main sinks for the Arctic Ocean, focusing on the moisture transport from this region. The results suggest that most of the moisture loss occurs locally over the Arctic Ocean itself, especially in summer. Some moisture contribution from the Arctic Ocean to continental areas in North America and Eurasia is also noted in autumn and winter especially from Central Arctic, the East Siberian Sea, the Laptev, Kara, Barents, East Greenland and Bering Seas, and the Sea of Okhotsk.


2017 ◽  
Author(s):  
Jun Ono ◽  
Hiroaki Tatebe ◽  
Yoshiki Komuro ◽  
Masato I. Nodzu ◽  
Masayoshi Ishii

Abstract. To assess the skill of predictions of the seasonal-to-interannual detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on January 1st, April 1st, July 1st, and October 1st for each year from 1980 to 2011, for lead times of up three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialized with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 1 year ahead. This skill is attributed to the subsurface ocean heat content originating in the North Atlantic. The subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to 3 months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian Seas initialized in July, as suggested by previous studies.


Author(s):  
Klaus Dodds ◽  
Mark Nuttall

Every week, stories about the Arctic, usually addressing the state of sea ice extent and thickness, diminishing glaciers, rapidly thawing permafrost, acidification of the Arctic Ocean, the resource potential of the region, the opening of new shipping routes, and possible geopolitical tensions, appear in the...


2010 ◽  
Vol 10 (2) ◽  
pp. 777-787 ◽  
Author(s):  
C. Matsoukas ◽  
N. Hatzianastassiou ◽  
A. Fotiadi ◽  
K. G. Pavlakis ◽  
I. Vardavas

Abstract. We estimate the effect of the Arctic sea ice on the absorbed (net) solar flux using a radiative transfer model. Ice and cloud input data to the model come from satellite observations, processed by the International Satellite Cloud Climatology Project (ISCCP) and span the period July 1983–June 2007. The sea-ice effect on the solar radiation fluctuates seasonally with the solar flux and decreases interannually in synchronisation with the decreasing sea-ice extent. A disappearance of the Arctic ice cap during the sunlit period of the year would radically reduce the local albedo and cause an annually averaged 19.7 W m−2 increase in absorbed solar flux at the Arctic Ocean surface, or equivalently an annually averaged 0.55 W m−2 increase on the planetary scale. In the clear-sky scenario these numbers increase to 34.9 and 0.97 W m−2, respectively. A meltdown only in September, with all other months unaffected, increases the Arctic annually averaged solar absorption by 0.32 W m−2. We examined the net solar flux trends for the Arctic Ocean and found that the areas absorbing the solar flux more rapidly are the North Chukchi and Kara Seas, Baffin and Hudson Bays, and Davis Strait. The sensitivity of the Arctic absorbed solar flux on sea-ice extent and cloud amount was assessed. Although sea ice and cloud affect jointly the solar flux, we found little evidence of strong non-linearities.


2021 ◽  
Author(s):  
Marie Sicard ◽  
Masa Kageyama ◽  
Sylvie Charbit ◽  
Pascale Braconnot ◽  
Jean-Baptiste Madeleine

Abstract. The Last Interglacial period (129–116 ka BP) is characterized by a strong orbital forcing which leads to a different seasonal and latitudinal distribution of insolation compared to the pre-industrial period. In particular, these changes amplify the seasonality of the insolation in the high latitudes of the northern hemisphere. Here, we investigate the Arctic climate response to this forcing by comparing the CMIP6 lig127k and pi-Control simulations performed with the IPSL-CM6A-LR model. Using an energy budget framework, we analyse the interactions between the atmosphere, ocean, sea ice and continents. In summer, the insolation anomaly reaches its maximum and causes a near-surface air temperature rise of 3.2 °C over the Arctic region. This warming is primarily due to a strong positive surface downwelling shortwave radiation anomaly over continental surfaces, followed by large heat transfers from the continents back to the atmosphere. The surface layers of the Arctic Ocean also receives more energy, but in smaller quantity than the continents due to a cloud negative feedback. Furthermore, while heat exchanges from the continental surfaces towards the atmosphere are strengthened, the ocean absorbs and stores the heat excess due to a decline in sea ice cover. However, the maximum near-surface air temperature anomaly does not peak in summer like insolation, but occurs in autumn with a temperature increase of 4.0 °C relative to the pre-industrial period. This strong warming is driven by a positive anomaly of longwave radiations over the Arctic ocean enhanced by a positive cloud feedback. It is also favoured by the summer and autumn Arctic sea ice retreat (−1.9 × 106 and −3.4 × 106 km2 respectively), which exposes the warm oceanic surface and allows heat stored by the ocean in summer and water vapour to be released. This study highlights the crucial role of the sea ice cover variations, the Arctic ocean, as well as changes in polar clouds optical properties on the Last Interglacial Arctic warming.


2018 ◽  
Vol 12 (2) ◽  
pp. 433-452 ◽  
Author(s):  
Alek A. Petty ◽  
Julienne C. Stroeve ◽  
Paul R. Holland ◽  
Linette N. Boisvert ◽  
Angela C. Bliss ◽  
...  

Abstract. The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative “compactness” of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, “New Arctic”, sea ice regime.


2015 ◽  
Vol 28 (12) ◽  
pp. 4971-4979 ◽  
Author(s):  
Masayo Ogi ◽  
Bunmei Taguchi ◽  
Meiji Honda ◽  
David G. Barber ◽  
Søren Rysgaard

Abstract Contemporary climate science seeks to understand the rate and magnitude of a warming global climate and how it impacts regional variability and teleconnections. One of the key drivers of regional climate is the observed reduction in end of summer sea-ice extent over the Arctic. Here the authors show that interannual variations between the September Arctic sea-ice concentration, especially in the East Siberian Sea, and the maximum Okhotsk sea-ice extent in the following winter are positively correlated, which is not explained by the recent warming trend only. An increase of sea ice both in the East Siberian Sea and the Okhotsk Sea and corresponding atmospheric patterns, showing a seesaw between positive anomalies of sea level pressures over the Arctic Ocean and negative anomalies over the midlatitudes, are related to cold anomalies over the high-latitude Eurasian continent. The patterns of atmospheric circulation and air temperatures are similar to those of the annually integrated Arctic Oscillation (AO). The negative annual AO forms colder anomalies in autumn sea surface temperatures both over the East Siberian Sea and the Okhotsk Sea, which causes heavy sea-ice conditions in both seas through season-to-season persistence.


Sign in / Sign up

Export Citation Format

Share Document