scholarly journals Optimal Excitation of Interannual Atlantic Meridional Overturning Circulation Variability

2011 ◽  
Vol 24 (2) ◽  
pp. 413-427 ◽  
Author(s):  
Laure Zanna ◽  
Patrick Heimbach ◽  
Andrew M. Moore ◽  
Eli Tziperman

Abstract The optimal excitation of Atlantic meridional overturning circulation (MOC) anomalies is investigated in an ocean general circulation model with an idealized configuration. The optimal three-dimensional spatial structure of temperature and salinity perturbations, defined as the leading singular vector and generating the maximum amplification of MOC anomalies, is evaluated by solving a generalized eigenvalue problem using tangent linear and adjoint models. Despite the stable linearized dynamics, a large amplification of MOC anomalies, mostly due to the interference of nonnormal modes, is initiated by the optimal perturbations. The largest amplification of MOC anomalies, found to be excited by high-latitude deep density perturbations in the northern part of the basin, is achieved after about 7.5 years. The anomalies grow as a result of a conversion of mean available potential energy into potential and kinetic energy of the perturbations, reminiscent of baroclinic instability. The time scale of growth of MOC anomalies can be understood by examining the time evolution of deep zonal density gradients, which are related to the MOC via the thermal wind relation. The velocity of propagation of the density anomalies, found to depend on the horizontal component of the mean flow velocity and the mean density gradient, determines the growth time scale of the MOC anomalies and therefore provides an upper bound on the MOC predictability time. The results suggest that the nonnormal linearized ocean dynamics can give rise to enhanced MOC variability if, for instance, overflows, eddies, and/or deep convection can excite high-latitude density anomalies in the ocean interior with a structure resembling that of the optimal perturbations found in this study. The findings also indicate that errors in ocean initial conditions or in model parameterizations or processes, particularly at depth, may significantly reduce the Atlantic MOC predictability time to less than a decade.

2011 ◽  
Vol 24 (3) ◽  
pp. 624-640 ◽  
Author(s):  
Camille Marini ◽  
Claude Frankignoul ◽  
Juliette Mignot

Abstract The links between the atmospheric southern annular mode (SAM), the Southern Ocean, and the Atlantic meridional overturning circulation (AMOC) at interannual to multidecadal time scales are investigated in a 500-yr control integration of the L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4) climate model. The Antarctic Circumpolar Current, as described by its transport through the Drake Passage, is well correlated with the SAM at the yearly time scale, reflecting that an intensification of the westerlies south of 45°S leads to its acceleration. Also in phase with a positive SAM, the global meridional overturning circulation is modified in the Southern Hemisphere, primarily reflecting a forced barotropic response. In the model, the AMOC and the SAM are linked at several time scales. An intensification of the AMOC lags a positive SAM by about 8 yr. This is due to a correlation between the SAM and the atmospheric circulation in the northern North Atlantic that reflects a symmetric ENSO influence on the two hemispheres, as well as an independent, delayed interhemispheric link driven by the SAM. Both effects lead to an intensification of the subpolar gyre and, by salinity advection, increased deep convection and a stronger AMOC. A slower oceanic link between the SAM and the AMOC is found at a multidecadal time scale. Salinity anomalies generated by the SAM enter the South Atlantic from the Drake Passage and, more importantly, the Indian Ocean; they propagate northward, eventually reaching the northern North Atlantic where, for a positive SAM, they decrease the vertical stratification and thus increase the AMOC.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Rong Zhang ◽  
Matthew Thomas

AbstractThe Greenland Sea is often viewed as the northern terminus of the Atlantic Meridional Overturning Circulation. It has also been proposed that the shutdown of open-ocean deep convection in the Labrador or Greenland Seas would substantially weaken the Atlantic Meridional Overturning Circulation. Here we analyze Robust Diagnostic Calculations conducted in a high-resolution global coupled climate model constrained by observed hydrographic climatology to provide a holistic picture of the long-term mean Atlantic Overturning Circulation at northern high latitudes. Our results suggest that the Arctic Ocean, not the Greenland Sea, is the northern terminus of the mean Atlantic Overturning Circulation; open-ocean deep convection, in either the Labrador or Greenland Seas, contributes minimally to the mean Atlantic Overturning Circulation, hence it would not necessarily be substantially weakened by a shutdown of open-ocean deep convection; horizontal circulation across sloping isopycnals contributes substantially (more than 40%) to the maximum mean northeastern subpolar Atlantic Overturning Circulation.


2016 ◽  
Vol 29 (11) ◽  
pp. 4155-4164 ◽  
Author(s):  
Douglas G. MacMartin ◽  
Laure Zanna ◽  
Eli Tziperman

Abstract Multidecadal variability in the Atlantic meridional overturning circulation (AMOC) is shown to differ significantly between the 4 × CO2 and preindustrial control simulations of the GFDL Earth System Model, version 2M (ESM2M) general circulation model (GCM). In the preindustrial simulation, this model has a peak in the power spectrum of both AMOC and northward heat transport at latitudes between 26° and 50°N. In the 4 × CO2 simulation, the only significant spectral peak is near 60°N. Understanding these differences is important for understanding the effect of future climate change on climate variability, as well as for providing insight into the physics underlying AMOC variability. Transfer function analysis demonstrates that the shift is predominantly due to a shift in the internal ocean dynamics rather than a change in stochastic atmospheric forcing. Specifically, the reduction in variance from 26° to 45°N is due to an increased stratification east of Newfoundland that results from the shallower and weaker mean overturning. The reduced AMOC variance that accompanies the reduced mean value of the AMOC at 4 × CO2 differs from predictions of simple box models that predict a weaker circulation to be closer to a stability bifurcation point and, therefore, be accompanied by amplified variability. The high-latitude variability in the 4 × CO2 simulation is related to the advection of anomalies by the subpolar gyre, distinct from the variability mechanism in the control simulation at lower latitudes. The 4 × CO2 variability has only a small effect on midlatitude meridional heat transport, but does significantly affect sea ice in the northern North Atlantic.


2020 ◽  
Vol 33 (12) ◽  
pp. 5155-5172
Author(s):  
Quentin Jamet ◽  
William K. Dewar ◽  
Nicolas Wienders ◽  
Bruno Deremble ◽  
Sally Close ◽  
...  

AbstractMechanisms driving the North Atlantic meridional overturning circulation (AMOC) variability at low frequency are of central interest for accurate climate predictions. Although the subpolar gyre region has been identified as a preferred place for generating climate time-scale signals, their southward propagation remains under consideration, complicating the interpretation of the observed time series provided by the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array–Western Boundary Time Series (RAPID–MOCHA–WBTS) program. In this study, we aim at disentangling the respective contribution of the local atmospheric forcing from signals of remote origin for the subtropical low-frequency AMOC variability. We analyze for this a set of four ensembles of a regional (20°S–55°N), eddy-resolving (1/12°) North Atlantic oceanic configuration, where surface forcing and open boundary conditions are alternatively permuted from fully varying (realistic) to yearly repeating signals. Their analysis reveals the predominance of local, atmospherically forced signal at interannual time scales (2–10 years), whereas signals imposed by the boundaries are responsible for the decadal (10–30 years) part of the spectrum. Due to this marked time-scale separation, we show that, although the intergyre region exhibits peculiarities, most of the subtropical AMOC variability can be understood as a linear superposition of these two signals. Finally, we find that the decadal-scale, boundary-forced AMOC variability has both northern and southern origins, although the former dominates over the latter, including at the site of the RAPID array (26.5°N).


2016 ◽  
Vol 29 (3) ◽  
pp. 941-962 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng

Abstract The impact of the North Atlantic Oscillation (NAO) on the Atlantic meridional overturning circulation (AMOC) and large-scale climate is assessed using simulations with three different climate models. Perturbation experiments are conducted in which a pattern of anomalous heat flux corresponding to the NAO is added to the model ocean. Differences between the perturbation experiments and a control illustrate how the model ocean and climate system respond to the NAO. A positive phase of the NAO strengthens the AMOC by extracting heat from the subpolar gyre, thereby increasing deep-water formation, horizontal density gradients, and the AMOC. The flux forcings have the spatial structure of the observed NAO, but the amplitude of the forcing varies in time with distinct periods varying from 2 to 100 yr. The response of the AMOC to NAO variations is small at short time scales but increases up to the dominant time scale of internal AMOC variability (20–30 yr for the models used). The amplitude of the AMOC response, as well as associated oceanic heat transport, is approximately constant as the time scale of the forcing is increased further. In contrast, the response of other properties, such as hemispheric temperature or Arctic sea ice, continues to increase as the time scale of the forcing becomes progressively longer. The larger response is associated with the time integral of the anomalous oceanic heat transport at longer time scales, combined with an increased impact of radiative feedback processes. It is shown that NAO fluctuations, similar in amplitude to those observed over the last century, can modulate hemispheric temperature by several tenths of a degree.


Sign in / Sign up

Export Citation Format

Share Document