Subseasonal Variation in ENSO-Related East Asian Rainfall Anomalies during Summer and Its Role in Weakening the Relationship between the ENSO and Summer Rainfall in Eastern China since the Late 1970s

2011 ◽  
Vol 24 (9) ◽  
pp. 2271-2284 ◽  
Author(s):  
Hong Ye ◽  
Riyu Lu

Abstract The findings of the study reported in this paper show that, during ENSO decaying summers, rainfall and circulation anomalies exhibit clear subseasonal variation. Corresponding to a positive (negative) December–February (DJF) Niño-3.4 index, a positive (negative) subtropical rainfall anomaly, with a southwest–northeast tilt, appears in South China and the western North Pacific (WNP) in the subsequent early summer (from June to middle July) but advances northward into the Huai River Basin in China as well as Korea and central Japan in late summer (from late July to August). Concurrently, a lower-tropospheric anticyclonic anomaly over the WNP extends northward from early to late summer. The seasonal change in the basic flows, characterized by the northward shift of the upper-tropospheric westerly jet and the WNP subtropical high, is suggested to be responsible for the differences in the above rainfall and circulation anomalies between early and late summer by inducing distinct extratropical responses even under the almost identical tropical forcing of a precipitation anomaly in the Philippine Sea. A particular focus of the study is to investigate, using station rainfall data, the subseasonal variations in ENSO-related rainfall anomalies in eastern China since the 1950s, to attempt to examine their role in weakening the relationship between the ENSO and summer mean rainfall in eastern China since the late 1970s. It is found that the ENSO-related rainfall anomalies tend to be similar between early and late summer before the late 1970s, that is, the period characterized by a stronger ENSO–summer mean rainfall relationship. After the late 1970s, however, the anomalous rainfall pattern in eastern China is almost reversed between early and late summer, resulting accordingly in a weakened relationship between the ENSO and total summer rainfall in eastern China.

2009 ◽  
Vol 22 (13) ◽  
pp. 3864-3875 ◽  
Author(s):  
Bin Wang ◽  
Jian Liu ◽  
Jing Yang ◽  
Tianjun Zhou ◽  
Zhiwei Wu

Abstract The current seasonal prediction of East Asia (EA) summer monsoon deals with June–July–August (JJA) mean anomalies. This study shows that the EA summer monsoon may be divided into early summer [May–June (MJ)] and late summer [July–August (JA)] and exhibits remarkable differences in mean state between MJ and JA. This study reveals that the principal modes of interannual precipitation variability have distinct spatial and temporal structures during the early and late summer. These principal modes can be categorized as either El Niño–Southern Oscillation (ENSO) related or non-ENSO related. During the period of 1979–2007, ENSO-related modes explain 35% of MJ variance and 45% of JA variance, and non-ENSO-related modes account for 25% of MJ variance and 20% of JA variance. For ENSO-related variance, about two-thirds are associated with ENSO decaying phases, and one-third is associated with ENSO developing phases. The ENSO-related MJ modes generally concur with rapid decay or early development of ENSO episodes, and the opposite tends to apply to ENSO-related JA modes. The non-ENSO MJ mode is preceded by anomalous land surface temperatures over southern China during the previous March and April. The non-ENSO JA mode is preceded by lasting equatorial western Pacific (the Niño-4 region) warming from the previous winter through late summer. The results suggest that 1) prediction of bimonthly (MJ) and (JA) anomalies may be useful, 2) accurate prediction of the detailed evolution of ENSO is critical for prediction of ENSO-related bimonthly rainfall anomalies over East Asia, and 3) non-ENSO-related modes are of paramount importance during ENSO neutral years. Further establishment of the physical linkages between the non-ENSO modes and their corresponding precursors may provide additional sources for EA summer monsoon prediction.


2021 ◽  
Author(s):  
Liwei Huo ◽  
Zhaoyong Guan ◽  
Dachao Jin ◽  
Xi Liu ◽  
Xudong Wang ◽  
...  

Abstract Eastern China has a large population with rapid development of the economy, where is the important crop producing region. In this region, the spatial and temporal distribution of autumn rainfall in Eastern China is uneven, which has important societal impact. Using the NCEP–NCAR reanalysis and other observational datasets, it is found that the spatial distribution of the first EOF mode of autumn rainfall anomalies in eastern China is consistent across the region, with significant interannual variabilities. Pronounced interdecadal variations are presented in the relationship between autumn rainfall anomalies in eastern China and sea-surface temperature anomalies (SSTA) over the southeastern tropical Indian Ocean (SETIO). The interdecadal changes have been analyzed by considering two epochs: one during 1979-2004 and the other during 2005-2019. It shows weak and insignificant correlations between the autumn rainfall anomalies in eastern China and SSTA over SETIO during the first epoch. On the other hand, they are remarkable and positively correlated with each other during the second epoch. The inter-decadal changes of the above relationship are related to the warming of SST over SETIO during the second epoch. It causes stronger low-level convergence and ascending motion over SETIO, with the co-occurrence of enhanced western Pacific subtropical high and anomalous abundant moisture over eastern China carried by a low-level southerly anomaly originating from the South China Sea. Simultaneously, the local Hadley circulation over eastern China becomes weak, corresponding to the anomalous ascending motion. The collaboration of anomalous water vapour transport and ascending motion strengthens the connection between the SETIO SSTA and the autumn precipitation anomalies in eastern China, and vice versa. In the boreal autumn of 2019, entire eastern China suffered extreme drought. It suggests that this drought event in eastern China is strongly affected by the negative SSTA over SETIO, which is consistent with the statistical results.


2017 ◽  
Vol 80 ◽  
pp. 18-23
Author(s):  
Qinghua Qi ◽  
Rongshuo Cai ◽  
Yashu Bai

2006 ◽  
Vol 33 (14) ◽  
Author(s):  
Tim E. Jupp ◽  
Christopher M. Taylor ◽  
Heiko Balzter ◽  
Charles T. George

2017 ◽  
Vol 30 (24) ◽  
pp. 10037-10045 ◽  
Author(s):  
Kaiming Hu ◽  
Shang-Ping Xie ◽  
Gang Huang

Year-to-year variations in summer precipitation have great socioeconomic impacts on China. Historical rainfall variability over China is investigated using a newly released high-resolution dataset. The results reveal summer-mean rainfall anomalies associated with ENSO that are anchored by mountains in central China east of the Tibetan Plateau. These orographically anchored hot spots of ENSO influence are poorly represented in coarse-resolution datasets so far in use. In post–El Niño summers, an anomalous anticyclone forms over the tropical northwest Pacific, and the anomalous southwesterlies on the northwest flank cause rainfall to increase in mountainous central China through orographic lift. At upper levels, the winds induce additional adiabatic updraft by increasing the eastward advection of warm air from Tibet. In post–El Niño summers, large-scale moisture convergence induces rainfall anomalies elsewhere over flat eastern China, which move northward from June to August and amount to little in the seasonal mean.


1999 ◽  
Vol 50 (8) ◽  
pp. 1451 ◽  
Author(s):  
Matthew T. Dunbabin ◽  
P. S. Cocks

The seed dormancy characteristics of 2 capeweed [Arctotheca calendula (L.) Levyns] ecotypes from Western Australia were studied to determine aspects of seed dormancy that contribute to the success of this species in southern Australia. Short- and long-term dormancy pattern of buried and soil surface seed, effect of summer temperatures on afterripening, and effect of temperature on seed germination were investigated using seed produced in a common environment. There were large differences in the seed dormancy pattern of the 2 ecotypes studied. On the soil surface, >95% of seed of the Mt Barker ecotype became non-dormant and germinated in the first year, the remainder germinating the following season. In contrast, only 5% of Mullewa seed germinated in the first year, with 75% germinating in the second year and 20% of seed remaining dormant after 2 years. Cycling of dormancy was observed for buried seed of both ecotypes, with periods of non-dormancy corresponding with the likely timing of the break of the season. Dormancy cycling was also apparent in seed stored under constant conditions in the laboratory. Burial prevented germination of both ecotypes; however, the ability to resist germination while buried was lost in 30% of the Mt Barker seed in the second season. Differences in the duration of dormancy of soil surface and buried capeweed seed have evolved as an adaptation to the different environments likely to be experienced by plants at their site of collection. All seeds possessed primary dormancy at maturity, with any afterripening during the first year occurring by the end of summer. Afterripening was enhanced by exposure to typical soil surface temperatures, providing some protection against germination during early summer rainfall. Protection from late summer rains is insured by the inability of seed to germinate at temperatures >30°C and a relatively slow rate of germination. These features of capeweed seed dormancy, combined with the ability to evolve genetically distinct populations suited to particular environments, help explain why capeweed is so widespread and abundant across southern Australia.


2018 ◽  
Vol 31 (6) ◽  
pp. 2321-2336 ◽  
Author(s):  
Zhiwei Zhu

The relationship between El Niño–Southern Oscillation (ENSO) and Australian summer rainfall (ASR) during 1960–2015 experienced an interdecadal change around the mid-1980s. Before the mid-1980s, ASR was significantly correlated with tropical central Pacific (TCP) sea surface temperature (SST), whereas after that it was not. While El Niño was always independent from ASR, La Niña had a close relationship with ASR. However, this relationship was weakened after the mid-1980s. The Indian Ocean SST warming might contribute to the weakening relationship between La Niña and ASR. For La Niña events before the mid-1980s, the negative SSTA over TCP and the southern tropical Indian Ocean induced a large-scale lower-level cyclonic anomaly over Australia, leading to nearly uniform positive precipitation over Australia. In this manner, a significant relationship between ASR and La Niña was established. On the contrary, for the La Niña events after the mid-1980s, because of the Indian Ocean SST warming, the equatorial eastern Indian Ocean and Maritime Continent presented positive SSTAs and enhanced moisture, favoring enhanced rainfall anomalies over the equatorial Maritime Continent. This enhanced rainfall condensation heating induced a lower-level cyclonic anomaly to the west of Australia. The northerly anomalies at the eastern flank of this cyclonic anomaly counteracted the southerly anomalies at the western flank of the cyclonic anomaly over eastern Australia induced by the negative TCP SSTA, leading to insignificant circulation and rainfall anomalies over Australia. As such, being interfered with by the equatorial Maritime Continent heating, the relationship between ASR and La Niña was weakened.


2012 ◽  
Vol 25 (19) ◽  
pp. 6851-6861 ◽  
Author(s):  
Rucong Yu ◽  
Jian Li

Abstract In this study, late-summer rainfall over eastern contiguous China is classified according to hourly intensity and the changes of moderate, intense, and extreme precipitation in response to variation of surface air temperature are analyzed. The e-folding decay intensity (Imi) derived from the exponential distribution of rainfall amount is defined as the threshold that partitions rainfall into moderate and intense rainfall, and the double e-folding decay intensity (Ie) is used as the threshold to pick out extreme cases. The mean values of Imi and Ie are about 12 and 24 mm h−1, respectively. Between the two periods, 1966–85 and 1986–2005, the ratio between moderate and intense rainfall has experienced significant changes. And the spatial pattern of changes in the percentage of moderate rainfall presents a direct relation with that of the surface air temperature. Based on temperature changes, three regimes, regime N (north China), regime C (central eastern China), and regime S (southeastern coastal area of China), are defined. In warming regimes (regimes N and S), the percentage of moderate rainfall exhibits a decreasing trend. In regime C, where the temperature has fallen, the percentage of moderate rainfall increased prominently. In all three regimes there are significant negative (positive) correlations between the percentage of moderate (intense) rainfall and the temperature. The relation between the extreme rainfall and the surface air temperature is far more regionally dependent. With plenty of water supply and little change in relative humidity, the extreme rainfall increased in regime S. Although regime N also shows strong warming trends, there is no significant trend in extreme precipitation due to the lack of water vapor transportation.


2019 ◽  
Vol 32 (11) ◽  
pp. 3389-3407 ◽  
Author(s):  
Haibo Shen ◽  
Shengping He ◽  
Huijun Wang

Abstract The 1997/98 and 2015/16 El Niño episodes are regarded as two super–El Niño events and have exerted profound influence on eastern China summer rainfall, as expected. However, on the subseasonal time scale, summer rainfall in these two years shows dramatic diversity, although the characteristics of the two super–El Niños are similar. This study reveals that the rainfall increased (decreased) over central China (~30°–35°N) and decreased (increased) over southeastern China (south of ~25°N) in August 1998 (2016), exhibiting a dipole anomaly pattern over eastern China. Observational analyses indicate that, associated with negative interannual variability of the sea ice area (SIA) over the Barents–Kara Seas (BKS) in July and August, August rainfall shows significantly negative (positive) anomalies over central (southeastern) China. Further analyses reveal that negative SIA anomalies in the BKS induce significantly anomalous upper-level divergence over the polar region, accompanied with anomalous upper-level convergence over the Caspian Sea. The advection of vorticity by these anomalous divergent and convergent flows indicates notable Rossby wave sources near the Caspian Sea, yielding a Rossby wave train propagating eastward to East Asia that causes positive barotropic and baroclinic energy convection near the exit region of the Asian jet stream. The accumulation of perturbation energy in East Asia stimulates the formation of the Pacific–Japan teleconnection, which is favorable for the dipole rainfall anomaly pattern over eastern China. Thus, the positive and negative SIA anomaly over the BKS in 1998 and 2016 may contribute to the reverse August precipitation anomaly in eastern China.


Sign in / Sign up

Export Citation Format

Share Document