scholarly journals Indo-Pacific Sea Surface Temperature Perturbations Associated with Intraseasonal Oscillations of Tropical Convection

2007 ◽  
Vol 20 (13) ◽  
pp. 3056-3082 ◽  
Author(s):  
Jean Philippe Duvel ◽  
Jérôme Vialard

Abstract Since the ISV of the convection is an intermittent phenomenon, the local mode analysis (LMA) technique is used to detect only the ensemble of intraseasonal events that are well organized at large scale. The LMA technique is further developed in this paper in order to perform multivariate analysis given patterns of SST and surface wind perturbations associated specifically with these intraseasonal events. During boreal winter, the basin-scale eastward propagation of the convective perturbation is present only over the Indian Ocean Basin. The intraseasonal SST response to convective perturbations is large and recurrent over thin mixed layer regions located north of Australia and in the Indian Ocean between 5° and 10°S. By contrast, there is little SST response in the western Pacific basin and no clear eastward propagation of the convective perturbation. During boreal summer, the SST response is large over regions with thin mixed layers located north of the Bay of Bengal, in the Arabian Sea, and in the China Sea. The northeastward propagation of the convective perturbation over the Bay of Bengal is associated with a standing oscillation of the SST and the surface wind between the equator and the northern part of the bay. In fact, many intraseasonal events mostly concern a single basin, suggesting that the interbasin organization is not a necessary condition for the existence of coupled intraseasonal perturbations of the convection. The perturbation of the surface wind tends to be larger to the west of the large-scale convective perturbation (like for a Gill-type dynamical response). For eastward propagating perturbations, the cooling due to the reinforcement of the wind (i.e., surface turbulent heat flux) thus generally lags the radiative cooling due to the reduction of the surface solar flux by the convective cloudiness. This large-scale Gill-type response of the surface wind also cools the surface to the west of the basin (northwest Arabian Sea and northwest Pacific Ocean), even if the convection is locally weak. An intriguing result is a frequently occurring small delay between the maximum surface wind and the minimum SST. Different explanations are invoked, like a rapid surface cooling due to the vanishing of an ocean warm layer (diurnal surface warming due to solar radiation in low wind conditions) as soon as the wind increases.

Author(s):  
Pierre Camberlin

Eastern Africa, classically presented as a major dry climate anomaly region in the otherwise wet equatorial belt, is a transition zone between the monsoon domains of West Africa and the Indian Ocean. Its complex terrain, unequaled in the rest of Africa, results in a huge diversity of climatic conditions that steer a wide range of vegetation landscapes, biodiversity and human occupations. Meridional rainfall gradients dominate in the west along the Nile valley and its surroundings, where a single boreal summer peak is mostly observed. Bimodal regimes (generally peaking in April and November) prevail in the east, gradually shifting to a single austral summer peak to the south. The swift seasonal shift of the Intertropical Convergence Zone and its replacement in January–February and June–September by strong meridional, generally diverging low-level winds (e.g., the Somali Jet), account for the low rainfall. These large-scale flows interact with topography and lakes, which have their own local circulation in the form of mountain and lake breezes. This results in complex rainfall patterns, with a strong diurnal component, and a frequent asymmetry in the rainfall distribution with respect to the major relief features. Whereas highly organized rain-producing systems are uncommon, convection is partly modulated at intra-seasonal (about 30–60-day) timescales. Interannual variability shows a fair level of spatial coherence in the region, at least in July–September in the west (Ethiopia and Nile Valley) and October–December in the east along the Indian Ocean. This is associated with a strong forcing from sea-surface temperatures in the Pacific and Indian Oceans, and to a lesser extent the Atlantic Ocean. As a result, Eastern Africa shows some of the largest interannual rainfall variations in the world. Some decadal-scale variations are also found, including a drying trend of the March–May rainy season since the 1980s in the eastern part of the region. Eastern Africa overall mean temperature increased by 0.7 to 1 °C from 1973 to 2013, depending on the season. The strong, sometimes non-linear altitudinal gradients of temperature and moisture regimes, also contribute to the climate diversity of Eastern Africa.


2018 ◽  
Vol 18 (16) ◽  
pp. 11973-11990 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Irene Stemmler ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50 % between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.


2020 ◽  
Author(s):  
Takeshi Izumo ◽  
Maratt Satheesan Swathi ◽  
Matthieu Lengaigne ◽  
Jérôme Vialard ◽  
Dr Ramesh Kumar

<p>A strong Low-Level Jet (LLJ), also known as the Findlater jet, develops over the Arabian Sea during the Indian summer monsoon. This jet is an essential source of moisture for monsoonal rainfall over the densely-populated Indian subcontinent and is a key contributor to the Indian Ocean oceanic productivity by sustaining the western Arabian Sea upwelling systems. The LLJ intensity fluctuates intraseasonally within the ~20- to 90-day band, in relation with the northward-propagating active and break phases of the Indian summer monsoon. Our observational analyses reveal that these large-scale regional convective perturbations  only explain about half of the intraseasonal LLJ variance, the other half being unrelated to large-scale convective perturbations over the Indian Ocean. We show that convective fluctuations in two regions outside the Indian Ocean can remotely force a LLJ intensification, four days later. Enhanced atmosphericdeep convection over the northwestern tropical Pacific yields westerly wind anomalies that propagate westward to the Arabian Sea as baroclinic atmospheric Rossby Waves. Suppressed convection over the eastern Pacific / North American monsoon region yields westerly wind anomalies that propagate eastward to the Indian Ocean as dry baroclinic equatorial Kelvin waves. Those largely independent remote influences jointly explain ~40% of the intraseasonal LLJ variance that is not related to convective perturbations over the Indian Ocean (i.e. ~20% of the total), with the northwestern Pacific contributing twice as much as the eastern Pacific. Taking into account these two remote influences should thus enhance the ability to predict the LLJ.</p><p> </p><p>Related reference: Swathi M.S, Takeshi Izumo, Matthieu Lengaigne, Jérôme Vialard and M.R. Ramesh Kumar:Remote influences on the Indian monsoon Low-Level Jet intraseasonal variations, accepted in Climate Dynamics.</p>


2012 ◽  
Vol 140 (2) ◽  
pp. 343-357 ◽  
Author(s):  
John Molinari ◽  
David Vollaro

This paper describes a large cyclonic gyre that lasted several days in the northwest Pacific during July 1988. Cyclonic winds at 850 hPa extended beyond the 2000-km radius with a radius of maximum winds of 700–800 km. The gyre exhibited clear skies within and north of its center. Active convection extended 4000 km in longitude to its south. The Madden–Julian oscillation (MJO) was in its active phase in the Indian Ocean prior to gyre formation. Consistent with earlier studies, diabatic heating in the MJO was associated with an anomalous upper-tropospheric westerly jet over the northeast Asian coast and a jet exit region over the northwest Pacific. Repeated equatorward wave-breaking events developed downwind of the jet exit region. One such event left behind a region of lower-tropospheric cyclonic vorticity and convection in the subtropics that played a key role in the gyre formation. A second wave-breaking event produced strong subsidence north of the mature gyre that contributed to its convective asymmetry. Gyres from 1985 and 1989 were compared to the 1988 case. All three gyres developed during an active MJO in the Indian Ocean. Each gyre displayed the same strong convective asymmetry. Each developed in July or August during the climatological peak in breaking Rossby waves in the northwest Pacific. Finally, all of the gyres developed during La Niña at nearly the same location. This location and the convective structure of the gyres closely matched composite La Niña anomalies during boreal summer.


1900 ◽  
Vol 32 (4) ◽  
pp. 763-768
Author(s):  
T. K. Krishṇa Menon

Malayalam is the language of the south-west of the Madras Presidency. It is the third most important language of the Presidency, the first and the second being Tamil and Telugu respectively. It is spoken in Malabar, Cochin, and Travancore. Out of a total of 5,932,207 inhabitants of these parts, 5,409,350 persons are those who speak Malayalam. These countries, taken as a whole, are bounded on the north, by South Canara, on the east by the far-famed Malaya range of mountains, on the south by the Indian Ocean, and on the west by the Arabian Sea.


2018 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Irene Stemmler ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Oceanic very short-lived substances (VSLS), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Asian monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean well. Using monthly resolved emissions, main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric entrainment in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric entrainment of bromoform is in the same range whether using monthly or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary up to 50 % between using monthly and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine entrainment from the tropical Indian Ocean and west Pacific critically depends on the seasonality and spatial distribution of the VSLS emissions.


2017 ◽  
Vol 30 (9) ◽  
pp. 3439-3459 ◽  
Author(s):  
Chidong Zhang ◽  
Jian Ling

Explanations for the barrier effect of the Indo-Pacific Maritime Continent (MC) on the MJO should satisfy two criteria. First, they should include specific features of the MC, namely, its intricate land–sea distributions and elevated terrains. Second, they should include mechanisms for both the barrier effect and its overcoming by some MJO events. Guided by these two criteria, a precipitation-tracking method is applied to identify MJO events that propagate across the MC (MJO-C) and those that are blocked by the MC (MJO-B). About a half of MJO events that form over the Indian Ocean propagate through the MC. Most of them (>75%) become weakened over the MC. The barrier effect cannot be explained in terms of the strength, horizontal scale, or spatial distribution of MJO convection when it approaches the MC from the west. A distinction between MJO-B and MJO-C is their precipitation over the sea versus land in the MC region. MJO-C events rain much more over the sea than over land, whereas rainfall over the sea never becomes dominant for MJO-B. This suggests that inhibiting convective development over the sea could be a possible mechanism for the barrier effect of the MC. Preceding conditions for MJO-C include stronger low-level zonal moisture flux convergence and higher SST in the MC region. Possible connections between these large-scale conditions and the land versus sea distributions of MJO rainfall through the diurnal cycle are discussed.


2012 ◽  
Vol 12 (2) ◽  
pp. 669-681
Author(s):  
S.-Y. Lee ◽  
T. Y. Koh

Abstract. The pattern of evaporative sources and the direction of the large-scale circulation over the Indian Ocean during the boreal summer raises the question of whether atmospheric conditions in Australia could influence conditions over the Indian subcontinent, despite the long passage of air over the Indian Ocean. The authors propose that such an influence is sometimes possible when there is unusually low temperature over inland Australia during the austral winter, through the mechanism where such a temperature extreme enhances evaporation rate over the eastern tropical Indian Ocean and hence enhances rainfall over two regions in western India after 13–19 days. Results from trajectory calculations indicate that such an influence is mechanistically feasible, with air of Australian origin contributing 0.5–1.5% of the climatological net precipitation for monsoon seasonal rainfall over western India. Statistics performed on reanalysis, satellite and in situ data are consistent with such a mechanism. Since extreme winter temperature in Australia is often associated with cold-air outbreaks, the described mechanism may be an example of how southern hemispheric mid-latitude weather can influence northern hemispheric monsoon rainfall. Further study is recommended through modelling and comparison with various known causes of atmospheric variability to confirm the existence of such a mechanism and determine the extent of its influence during specific low temperature episodes.


1966 ◽  
Vol 56 (1) ◽  
pp. 69-74
Author(s):  
Wm. H. Berninghausen

abstract References have been made in the past to the absence of tsunamis and seismic seiches in the Indian Ocean. However, a survey of available literature indicates that at least 27 such waves have been reported. Most of these were reported from the coastal regions of the seismically active Indonesian Arc, whereas progressively fewer such waves were reported from the coastal regions adjacent to the Bay of Bengal, Arabian Sea, and the southeastern coast of Africa and the western coast of Australia.


Sign in / Sign up

Export Citation Format

Share Document