scholarly journals Retrieval of Three-Dimensional Raindrop Size Distribution Using X-Band Polarimetric Radar Data

2010 ◽  
Vol 27 (8) ◽  
pp. 1265-1285 ◽  
Author(s):  
D-S. Kim ◽  
M. Maki ◽  
D-I. Lee

Abstract An improved algorithm based on the self-consistent principle for rain attenuation correction of reflectivity ZH and differential reflectivity ZDR are presented for X-band radar. The proposed algorithm calculates the optimum coefficients for the relation between the specific attenuation coefficient and the specific differential phase, every 1 km along a slant range. The attenuation-corrected ZDR is calculated from reflectivity at horizontal polarization and from reflectivity at vertical polarization after attenuation correction. The improved rain attenuation correction algorithm is applied to the range–height indicator (RHI) scans as well as the plan position indicator (PPI) volume scan data observed by X-band wavelength (MP-X) radar, as operated by the National Research Institute for Earth Science and Disaster Prevention (NIED) in Japan. The corrected ZH and ZDR values are in good agreement with those calculated from the drop size distribution (DSD) measured by disdrometers. The two governing parameters of a normalized gamma DSD, normalized number concentration NW, and drop median diameter D0 are estimated from the corrected ZH and ZDR, and specific differential phase KDP values based on the “constrained-gamma” method. The method is applied to PPI and RHI data of a typhoon rainband to retrieve the three-dimensional distribution of DSD. The retrieved DSD parameters show reasonable agreement with disdrometer data. The present results demonstrate that high-quality correction and retrieval DSDs can be derived from X-band polarimetric radar data.

2008 ◽  
Vol 25 (5) ◽  
pp. 729-741 ◽  
Author(s):  
Eugenio Gorgucci ◽  
V. Chandrasekar ◽  
Luca Baldini

Abstract The recent advances in attenuation correction methodology are based on the use of a constraint represented by the total amount of the attenuation encountered along the path shared over each range bin in the path. This technique is improved by using the inner self-consistency of radar measurements. The full self-consistency methodology provides an optimization procedure for obtaining the best estimate of specific and cumulative attenuation and specific and cumulative differential attenuation. The main goal of the study is to examine drop size distribution (DSD) retrieval from X-band radar measurements after attenuation correction. A new technique for estimating the slope of a linear axis ratio model from polarimetric radar measurements at attenuated frequencies is envisioned. A new set of improved algorithms immune to variability in the raindrop shape–size relation are presented for the estimation of the governing parameters characterizing a gamma raindrop size distribution. Simulations based on the use of profiles of gamma drop size distribution parameters obtained from S-band observations are used for quantitative analysis. Radar data collected by the NOAA/Earth System Research Laboratory (ESRL) X-band polarimetric radar are used to provide examples of the DSD parameter retrievals using attenuation-corrected radar measurements. Retrievals agree fairly well with disdrometer data. The radar data are also used to observe the prevailing shape of raindrops directly from the radar measurements. A significant result is that oblateness of drops is bounded between the two shape models of Pruppacher and Beard, and Beard and Chuang, the former representing the upper boundary and the latter the lower boundary.


2006 ◽  
Vol 23 (7) ◽  
pp. 952-963 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Robert Cifelli ◽  
Patrick C. Kennedy ◽  
Steven W. Nesbitt ◽  
Steven A. Rutledge ◽  
...  

Abstract A comparative study of the use of X- and S-band polarimetric radars for rainfall parameter retrievals is presented. The main advantage of X-band polarimetric measurements is the availability of reliable specific differential phase shift estimates, KDP, for lighter rainfalls when phase measurements at the S band are too noisy to produce usable KDP. Theoretical modeling with experimental raindrop size distributions indicates that due to some non-Rayleigh resonant effects, KDP values at a 3.2-cm wavelength (X band) are on average a factor of 3.7 greater than at 11 cm (S band), which is a somewhat larger difference than simple frequency scaling predicts. The non-Rayleigh effects also cause X-band horizontal polarization reflectivity, Zeh, and differential reflectivity, ZDR, to be larger than those at the S band. The differences between X- and S-band reflectivities can exceed measurement uncertainties for Zeh starting approximately at Zeh > 40 dBZ, and for ZDR when the mass-weighted drop diameter, Dm, exceeds about 2 mm. Simultaneous X- and S-band radar measurements of rainfall showed that consistent KDP estimates exceeding about 0.1° km−1 began to be possible at reflectivities greater than ∼26–30 dBZ while at the S band such estimates can generally be made if Zeh > ∼35–39 dBZ. Experimental radar data taken in light-to-moderate stratiform rainfalls with rain rates R in an interval from 2.5 to 15 mm h−1 showed availability of the KDP-based estimates of R for most of the data points at the X band while at the S band such estimates were available only for R greater than about 8–10 mm h−1. After correcting X-band differential reflectivity measurements for differential attenuation, ZDR measurements at both radar frequency bands were in good agreement with each other for Dm < 2 mm, which approximately corresponds to ZDR ≈ 1.6 dB. The ZDR-based retrievals of characteristic raindrop sizes also agreed well with in situ disdrometer measurements.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 119
Author(s):  
Chao Wang ◽  
Chong Wu ◽  
Liping Liu ◽  
Xi Liu ◽  
Chao Chen

The values of ratio a of the linear relationship between specific attenuation and specific differential phase vary significantly in convective storms as a result of resonance scattering. The best-linear-fit ratio a at X band is determined using the modified attenuation correction algorithm based on differential phase and attenuation, as well as the premise that reflectivity is unattenuated in S band radar detection. Meanwhile, the systemic reflectivity bias between the X band radar and S band radar and water layer attenuation (ZW) on the wet antenna cover of the X band radar are also considered. The good performance of the modified correction algorithm is demonstrated in a moderate rainfall event. The data were collected by four X band dual-polarization (X-POL) radar sites, namely, BJXCP, BJXFS, BJXSY, and BJXTZ, and a China’s New Generation Weather Radar (CINRAD/SA radar) site, BJSDX, in Beijing on 20 July 2016. Ratio a is calculated for each volume scan of the X band radar, with a mean value of 0.26 dB deg−1 varying from 0.20 to 0.31 dB deg−1. The average values of systemic reflectivity bias between the X band radar (at BJXCP, BJXFS, BJXSY, and BJXTZ) and S band radar (at BJSDX) are 0, −3, 2, and 0 dB, respectively. The experimentally determined ZW is in substantial agreement with the theoretically calculated ones, and their values are an order of magnitude smaller than rain attenuation. The comparison of the modified attenuation correction algorithm and the empirical-fixed-ratio correction algorithm is further evaluated at the X-POL radar. It is shown that the modified attenuation correction algorithm in the present paper provides higher correction accuracy for rain attenuation than the empirical-fixed-ratio correction algorithm.


2015 ◽  
Vol 8 (11) ◽  
pp. 4681-4698 ◽  
Author(s):  
G. Vulpiani ◽  
L. Baldini ◽  
N. Roberto

Abstract. This work documents the effective use of X-band radar observations for monitoring severe storms in an operational framework. Two severe hail-bearing Mediterranean storms that occurred in 2013 in southern Italy, flooding two important Sicilian cities, are described in terms of their polarimetric radar signatures and retrieved rainfall fields. The X-band dual-polarization radar operating inside the Catania airport (Sicily, Italy), managed by the Italian Department of Civil Protection, is considered here. A suitable processing is applied to X-band radar measurements. The crucial procedural step relies on the differential phase processing, being preparatory for attenuation correction and rainfall estimation. It is based on an iterative approach that uses a very short-length (1 km) moving window, allowing proper capture of the observed high radial gradients of the differential phase. The parameterization of the attenuation correction algorithm, which uses the reconstructed differential phase shift, is derived from electromagnetic simulations based on 3 years of drop size distribution (DSD) observations collected in Rome (Italy). A fuzzy logic hydrometeor classification algorithm was also adopted to support the analysis of the storm characteristics. The precipitation field amounts were reconstructed using a combined polarimetric rainfall algorithm based on reflectivity and specific differential phase. The first storm was observed on 21 February when a winter convective system that originated in the Tyrrhenian Sea, marginally hit the central-eastern coastline of Sicily, causing a flash flood in Catania. Due to an optimal location (the system is located a few kilometers from the city center), it was possible to retrieve the storm characteristics fairly well, including the amount of rainfall field at the ground. Extemporaneous signal extinction, caused by close-range hail core causing significant differential phase shift in a very short-range path, is documented. The second storm, on 21 August 2013, was a summer mesoscale convective system that originated from a Mediterranean low pressure system lasting a few hours that eventually flooded the city of Syracuse. The undergoing physical process, including the storm dynamics, is inferred by analyzing the vertical sections of the polarimetric radar measurements. The high registered amount of precipitation was fairly well reconstructed, although with a trend toward underestimation at increasing distances. Several episodes of signal extinction were clearly manifested during the mature stage of the observed supercells.


2016 ◽  
Author(s):  
Timothy H. Raupach ◽  
Alexis Berne

Abstract. A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific double-normalised DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.


2020 ◽  
Vol 12 (13) ◽  
pp. 2133
Author(s):  
Min-Seong Kim ◽  
Byung Hyuk Kwon

Rain attenuation can hinder the implementation of quantitative precipitation estimations using X-band weather radar. Numerous studies have been conducted on correcting the attenuation of radar reflectivity by utilizing a dual-polarimetric radar and an arbitrary-oriented microwave link; however, there is a need to optimize the required number of microwave links and their locations. In this study, we tested four attenuation correction methods and proposed a novel algorithm based on the sole use of adjacent multiple microwave links. The attenuation of the X-band radar reflectivity was corrected by performing forward iterations at each link, and the correction coefficients were statistically analyzed to reduce the instability problem. The algorithms of each method were evaluated by studying the cases of convective and stratiform rainfall, and then validated by comparing the corrected reflectivity of the X-band radar with the qualitatively controlled reflectivity of the S-band radar. The new method was as efficient as the conventional method based on the specific differential phase of dual-polarimetric radar. Furthermore, the correction coefficient was more effectively optimized and stabilized using seven microwave links rather than a single link, and no further independent reference data were required. In addition, the attenuation correction also accounted for spatiotemporal differentiation depending on the rainfall type, and could recover the physical structure of the rainfall. The method developed herein can facilitate estimations of quantitative rainfall in developing countries where dual-polarization weather radars are not common. The exploitation of microwave link data is a promising method for rainfall remote sensing.


2020 ◽  
Vol 13 (9) ◽  
pp. 4727-4750
Author(s):  
Viswanathan Bringi ◽  
Kumar Vijay Mishra ◽  
Merhala Thurai ◽  
Patrick C. Kennedy ◽  
Timothy H. Raupach

Abstract. The lower-order moments of the drop size distribution (DSD) have generally been considered difficult to retrieve accurately from polarimetric radar data because these data are related to higher-order moments. For example, the 4.6th moment is associated with a specific differential phase and the 6th moment with reflectivity and ratio of high-order moments with differential reflectivity. Thus, conventionally, the emphasis has been to estimate rain rate (3.67th moment) or parameters of the exponential or gamma distribution for the DSD. Many double-moment “bulk” microphysical schemes predict the total number concentration (the 0th moment of the DSD, or M0) and the mixing ratio (or equivalently, the 3rd moment M3). Thus, it is difficult to compare the model outputs directly with polarimetric radar observations or, given the model outputs, forward model the radar observables. This article describes the use of double-moment normalization of DSDs and the resulting stable intrinsic shape that can be fitted by the generalized gamma (G-G) distribution. The two reference moments are M3 and M6, which are shown to be retrievable using the X-band radar reflectivity, differential reflectivity, and specific attenuation (from the iterative correction of measured reflectivity Zh using the total Φdp constraint, i.e., the iterative ZPHI method). Along with the climatological shape parameters of the G-G fit to the scaled/normalized DSDs, the lower-order moments are then retrieved more accurately than possible hitherto. The importance of measuring the complete DSD from 0.1 mm onwards is emphasized using, in our case, an optical array probe with 50 µm resolution collocated with a two-dimensional video disdrometer with about 170 µm resolution. This avoids small drop truncation and hence the accurate calculation of lower-order moments. A case study of a complex multi-cell storm which traversed an instrumented site near the CSU-CHILL radar is described for which the moments were retrieved from radar and compared with directly computed moments from the complete spectrum measurements using the aforementioned two disdrometers. Our detailed validation analysis of the radar-retrieved moments showed relative bias of the moments M0 through M2 was <15 % in magnitude, with Pearson’s correlation coefficient >0.9. Both radar measurement and parameterization errors were estimated rigorously. We show that the temporal variation of the radar-retrieved mass-weighted mean diameter with M0 resulted in coherent “time tracks” that can potentially lead to studies of precipitation evolution that have not been possible so far.


2005 ◽  
Vol 6 (3) ◽  
pp. 248-262 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
David E. Kingsmill ◽  
Brooks E. Martner ◽  
F. Martin Ralph

Abstract The utility of X-band polarimetric radar for quantitative retrievals of rainfall parameters is analyzed using observations collected along the U.S. west coast near the mouth of the Russian River during the Hydrometeorological Testbed project conducted by NOAA’s Environmental Technology and National Severe Storms Laboratories in December 2003 through March 2004. It is demonstrated that the rain attenuation effects in measurements of reflectivity (Ze) and differential attenuation effects in measurements of differential reflectivity (ZDR) can be efficiently corrected in near–real time using differential phase shift data. A scheme for correcting gaseous attenuation effects that are important at longer ranges is introduced. The use of polarimetric rainfall estimators that utilize specific differential phase and differential reflectivity data often provides results that are superior to estimators that use fixed reflectivity-based relations, even if these relations were derived from the ensemble of drop size distributions collected in a given geographical region. Comparisons of polarimetrically derived rainfall accumulations with data from the high-resolution rain gauges located along the coast indicated deviation between radar and gauge estimates of about 25%. The ZDR measurements corrected for differential attenuation were also used to retrieve median raindrop sizes, D0. Because of uncertainties in differential reflectivity measurements, these retrievals are typically performed only for D0 &gt; 0.75 mm. The D0 estimates from an impact disdrometer located at 25 km from the radar were in good agreement with the radar retrievals. The experience of operating the transportable polarimetric X-band radar in the coastal area that does not have good coverage by the National Weather Service radar network showed the value of such radar in filling the gaps in the network coverage. The NOAA X-band radar was effective in covering an area up to 40–50 km in radius offshore adjacent to a region that is prone to flooding during wintertime landfalling Pacific storms.


2014 ◽  
Vol 53 (6) ◽  
pp. 1636-1658 ◽  
Author(s):  
Matthew R. Kumjian ◽  
Steven A. Rutledge ◽  
Roy M. Rasmussen ◽  
Patrick C. Kennedy ◽  
Mike Dixon

AbstractHigh-resolution X-band polarimetric radar data were collected in 19 snowstorms over northern Colorado in early 2013 as part of the Front Range Orographic Storms (FROST) project. In each case, small, vertically erect convective turrets were observed near the echo top. These “generating cells” are similar to those reported in the literature and are characterized by ~1-km horizontal and vertical dimensions, vertical velocities of 1–2 m s−1, and lifetimes of at least 10 min. In some cases, these generating cells are enshrouded by enhanced differential reflectivity ZDR, indicating a “shroud” of pristine crystals enveloping the larger, more isotropic particles. The anticorrelation of radar reflectivity factor at horizontal polarization ZH and ZDR suggests ongoing aggregation or riming of particles in the core of generating cells. For cases in which radiosonde data were collected, potential instability was found within the layer in which generating cells were observed. The persistence of these layers suggests that radiative effects are important, perhaps by some combination of cloud-top cooling and release of latent enthalpy through depositional and riming growth of particles within the cloud. The implications for the ubiquity of generating cells and their role as a mechanism for ice crystal initiation and growth are discussed.


2014 ◽  
Vol 53 (6) ◽  
pp. 1678-1695 ◽  
Author(s):  
J. C. Hubbert ◽  
S. M. Ellis ◽  
W.-Y. Chang ◽  
Y.-C. Liou

AbstractIn this paper, experimental X-band polarimetric radar data from simultaneous transmission of horizontal (H) and vertical (V) polarizations (SHV) are shown, modeled, and microphysically interpreted. Both range–height indicator data and vertical-pointing X-band data from the Taiwan Experimental Atmospheric Mobile-Radar (TEAM-R) are presented. Some of the given X-band data are biased, which is very likely caused by cross coupling of the H and V transmitted waves as a result of aligned, canted ice crystals. Modeled SHV data are used to explain the observed polarimetric signatures. Coincident data from the National Center for Atmospheric Research S-band polarimetric radar (S-Pol) are presented to augment and support the X-band polarimetric observations and interpretations. The polarimetric S-Pol data are obtained via fast-alternating transmission of horizontal and vertical polarizations (FHV), and thus the S-band data are not contaminated by the cross coupling (except the linear depolarization ratio LDR) observed in the X-band data. The radar data reveal that there are regions in the ice phase where electric fields are apparently aligning ice crystals near vertically and thus causing negative specific differential phase Kdp. The vertical-pointing data also indicate the presence of preferentially aligned ice crystals that cause differential reflectivity Zdr and differential phase ϕdp to be strong functions of azimuth angle.


Sign in / Sign up

Export Citation Format

Share Document