Status of the TRMM 2A12 Land Precipitation Algorithm

2010 ◽  
Vol 27 (8) ◽  
pp. 1343-1354 ◽  
Author(s):  
Kaushik Gopalan ◽  
Nai-Yu Wang ◽  
Ralph Ferraro ◽  
Chuntao Liu

Abstract This paper describes improvements to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) land rainfall algorithm in version 7 (v7) of the TRMM data products. The correlations between rain rates and TMI 85-GHz brightness temperatures (Tb) for convective and stratiform rain are generated using 7 years of collocated TMI and TRMM precipitation radar (PR) data. The TMI algorithm for estimating the convective ratio of rainfall is also modified. This paper highlights both the improvements in the v7 algorithm and the continuing problems with the land rainfall retrievals. It is demonstrated that the proposed changes to the algorithm significantly lower the overestimation by TMI globally and over large sections of central Africa and South America. Also highlighted are the problems with the 2A12 land algorithm that have not been addressed in the version 7 algorithm, such as large regional and seasonal dependence of biases in the TMI rain estimates, and potential changes to the algorithm to resolve these problems are discussed.

2005 ◽  
Vol 44 (3) ◽  
pp. 367-383 ◽  
Author(s):  
Fumie A. Furuzawa ◽  
Kenji Nakamura

Abstract It is well known that precipitation rate estimation is poor over land. Using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI), the performance of the TMI rain estimation was investigated. Their differences over land were checked by using the orbit-by-orbit data for June 1998, December 1998, January 1999, and February 1999, and the following results were obtained: 1) Rain rate (RR) near the surface for the TMI (TMI-RR) is smaller than that for the PR (PR-RR) in winter; it is also smaller from 0900 to 1800 LT. These dependencies show some variations at various latitudes or local times. 2) When the storm height is low (<5 km), the TMI-RR is smaller than the PR-RR; when it is high (>8 km), the PR-RR is smaller. These dependencies of the RR on the storm height do not depend on local time or latitude. The tendency for a TMI-RR to be smaller when the storm height is low is more noticeable in convective rain than in stratiform rain. 3) Rain with a low storm height predominates in winter or from 0600 to 1500 LT, and convective rain occurs frequently from 1200 to 2100 LT. Result 1 can be explained by results 2 and 3. It can be concluded that the TMI underestimates rain with low storm height over land because of the weakness of the TMI algorithm, especially for convective rain. On the other hand, it is speculated that TMI overestimates rain with high storm height because of the effect of anvil rain with low brightness temperatures at high frequencies without rain near the surface, and because of the effect of evaporation or tilting, which is indicated by a PR profile and does not appear in the TMI profile. Moreover, it was found that the PR rain for the cases with no TMI rain amounted to about 10%–30% of the total but that the TMI rain for the cases with no PR rain accounted for only a few percent of the TMI rain. This result can be explained by the difficulty of detecting shallow rain with the TMI.


2017 ◽  
Vol 56 (7) ◽  
pp. 1867-1881 ◽  
Author(s):  
Andung Bayu Sekaranom ◽  
Hirohiko Masunaga

AbstractProperties of the rain estimation differences between Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) 2A25, TRMM Microwave Imager (TMI) 2A12, and TRMM Multisatellite Precipitation Analysis (TMPA) 3B42 are investigated with a focus on distinguishing between nonextreme and extreme rains over the Maritime Continent from 1998 to 2014. Statistical analyses of collocated TMI 1B11 85-GHz polarization-corrected brightness temperatures, PR 2A23 storm-top heights, and PR 2A25 vertical rain profiles are conducted to identify possible sources of the differences. The results indicate that a large estimation difference exists between PR and TMI for the general rain rate (extreme and nonextreme events). The PR–TMI rain-rate differences are larger over land and coast than over ocean. When extreme rain is isolated, a higher frequency of occurrence is identified by PR over ocean, followed by TMI and TMPA. Over land, TMI yields higher rain frequencies than PR with an intermediate range of rain rates (between 15 and 25 mm h−1), but it gives way to PR for the highest extremes. The turnover at the highest rain rates arises because the heaviest rain depicted by PR does not necessarily accompany the strongest ice-scattering signals, which TMI relies on for estimating precipitation over land and coast.


2016 ◽  
Vol 33 (7) ◽  
pp. 1539-1556 ◽  
Author(s):  
Paula J. Brown ◽  
Christian D. Kummerow ◽  
David L. Randel

AbstractThe Goddard profiling algorithm (GPROF) is an operational passive microwave retrieval that uses a Bayesian scheme to estimate rainfall. GPROF 2014 retrieves rainfall and hydrometeor vertical profile information based upon a database of profiles constructed to be simultaneously consistent with Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI) observations. A small number of tropical cyclones are in the current database constructed from one year of TRMM data, resulting in the retrieval performing relatively poorly for these systems, particularly for the highest rain rates. To address this deficiency, a new database focusing specifically on hurricanes but consisting of 9 years of TRMM data is created. The new database and retrieval procedure for TMI and GMI is called Hurricane GPROF. An initial assessment of seven tropical cyclones shows that Hurricane GPROF provides a better estimate of hurricane rain rates than GPROF 2014. Hurricane GPROF rain-rate errors relative to the PR are reduced by 20% compared to GPROF, with improvements in the lowest and highest rain rates especially. Vertical profile retrievals for four hydrometeors are also enhanced, as error is reduced by 30% compared to the GPROF retrieval, relative to PR estimates. When compared to the full database of tropical cyclones, Hurricane GPROF improves the RMSE and MAE of rain-rate estimates over those from GPROF by about 22% and 27%, respectively. Similar improvements are also seen in the overall rain-rate bias for hurricanes in the database, which is reduced from 0.20 to −0.06 mm h−1.


2006 ◽  
Vol 7 (4) ◽  
pp. 687-704 ◽  
Author(s):  
Victoria L. Sanderson ◽  
Chris Kidd ◽  
Glenn R. McGregor

Abstract This paper uses rainfall estimates retrieved from active and passive microwave data to investigate how spatially and temporally dependent algorithm biases affect the monitoring of the diurnal rainfall cycle. Microwave estimates used in this study are from the Tropical Rainfall Measuring Mission (TRMM) and include the precipitation radar (PR) near-surface (2A25), Goddard Profiling (GPROF) (2A12), and PR–TRMM Microwave Imager (TMI) (2B31) rain rates from the version 5 (v5) 3G68 product. A rainfall maximum is observed early evening over land, while oceans generally show a minimum in rainfall during the morning. Comparisons of annual and seasonal mean hourly rain rates and harmonics at both global and regional scales show significant differences between the algorithms. Relative and absolute biases over land vary according to the time of day. Clearly, these retrieval biases need accounting for, either in the physics of the algorithm or through the provision of accurate error estimates, to avoid erroneous climatic signals and the discrediting of satellite rainfall estimations.


2007 ◽  
Vol 34 (24) ◽  
Author(s):  
Eun-Kyoung Seo ◽  
Byung-Ju Sohn ◽  
Guosheng Liu

2015 ◽  
Vol 54 (4) ◽  
pp. 867-879 ◽  
Author(s):  
Eun-Kyoung Seo ◽  
Svetla Hristova-Veleva ◽  
Guosheng Liu ◽  
Mi-Lim Ou ◽  
Geun-Hyeok Ryu

AbstractVersion-7 (V7) rain rates retrieved by the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) are spatially and temporally collocated over the ocean and compared at TMI footprint scale for the summer months of 16 years, within the TRMM coverage belt from 38°S to 38°N latitude. This study puts special emphasis on examining how the estimates from the two instruments compare with each other for different rain types and for different geographical locations. It is found that, although the two rain-rate estimates agree with each other extremely well (only 2.6% difference) when averaged globally and over all rain types, large discrepancies (~60%) are observed if comparisons are conducted for rain pixels of only convective type or for regions where convective rain types dominate. For the stratiform rain type, the TMI and PR retrievals compare well with a difference of ~13% globally. In particular, the partial beam filling seems to be less important to the underestimation of TMI rain against PR rain than the spatial variability of rain. These findings point to the existing need for better understanding of the remote-sensing physics of convective rain. Such an improved understanding is critically important to decreasing the uncertainty in oceanic rainfall estimation from space in the coming GPM era of global long-term observations that will lead to the creation of a climate record of trends in precipitation.


2018 ◽  
Vol 10 (11) ◽  
pp. 1770 ◽  
Author(s):  
Ruanyu Zhang ◽  
Zhenzhan Wang ◽  
Kyle Hilburn

A rainfall retrieval algorithm for tropical cyclones (TCs) using 18.7 and 36.5 GHz of vertically and horizontally polarized brightness temperatures (Tbs) from the Microwave Radiation Imager (MWRI) is presented. The beamfilling effect is corrected based on ratios of the retrieved liquid water absorption and theoretical Mie absorption coefficients at 18.7 and 36.5 GHz. To assess the performance of this algorithm, MWRI measurements are matched with the National Snow and Ice Data Center (NSIDC) precipitation for six TCs. The comparison between MWRI and NSIDC rain rates is relatively encouraging, with a mean bias of −0.14 mm/h and an overall root-mean-square error (RMSE) of 1.99 mm/h. A comparison of pixel-to-pixel retrievals shows that MWRI retrievals are constrained to reasonable levels for most rain categories, with a minimum error of −1.1% in the 10–15 mm/h category; however, with maximum errors around −22% at the lowest (0–0.5 mm/h) and highest rain rates (25–30 mm/h). Additionally, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) Tbs are applied to retrieve rain rates to assess the sensitivity of this algorithm, with a mean bias and RMSE of 0.90 mm/h and 3.11 mm/h, respectively. For the case study of TC Maon (2011), MWRI retrievals underestimate rain rates over 6 mm/h and overestimate rain rates below 6 mm/h compared with Precipitation Radar (PR) observations on storm scales. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rainfall data provided by the Remote Sensing Systems (RSS) are applied to assess the representation of mesoscale structures in intense TCs, and they show good consistency with MWRI retrievals.


2018 ◽  
Vol 35 (6) ◽  
pp. 1181-1199 ◽  
Author(s):  
E. F. Stocker ◽  
F. Alquaied ◽  
S. Bilanow ◽  
Y. Ji ◽  
L. Jones

AbstractThe National Aeronautics and Space Administration (NASA) has always included data reprocessing as a major component of every science mission. A final reprocessing is typically a part of mission closeout (known as phase F). The Tropical Rainfall Measuring Mission (TRMM) is currently in phase F, and NASA is preparing for the last reprocessing of all the TRMM precipitation data as part of the closeout. This reprocessing includes improvements in calibration of both the TRMM Microwave Imager (TMI) and the TRMM Precipitation Radar (PR). An initial step in the version 8 reprocessing is the improvement of geolocation. The PR calibration is being updated by the Japan Aerospace Exploration Agency (JAXA) using data collected as part of the calibration of the Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) Core Observatory. JAXA undertook a major effort to ensure TRMM PR and GPM Ku-band calibration is consistent.A major component of the TRMM version 8 reprocessing is to create consistent retrievals with the GPM version 05 (V05) retrievals. To this end, the TRMM version 8 reprocessing uses retrieval algorithms based on the GPM V05 algorithms. This approach ensures consistent retrievals from December 1997 (the beginning of TRMM) through the current ongoing GPM retrievals. An outcome of this reprocessing is the incorporation of TRMM data products into the GPM data suite. Incorporation also means that GPM file naming conventions and reprocessed TRMM data carry the V05 data product version. This paper describes the TRMM version 8 reprocessing, focusing on the improvements in TMI level 1 products.


Sign in / Sign up

Export Citation Format

Share Document