scholarly journals The Role of Trade Wind Surges in Tropical Cyclone Formations in the Western North Pacific

2010 ◽  
Vol 138 (11) ◽  
pp. 4120-4134 ◽  
Author(s):  
Lung-Yao Chang ◽  
Kevin K. W. Cheung ◽  
Cheng-Shang Lee

Abstract A total of 40 out of 531 tropical cyclones that formed in the western North Pacific during 1986–2005 have accompanied trade wind surges located 5°–15° latitude to the north of the pretropical cyclone disturbance centers. Composite and empirical orthogonal function analyses indicate that the trade wind surges are related to a midlatitude eastward-moving high pressure system often found during the East Asian winter monsoon. Therefore, these trade wind surge tropical cyclones tend to occur in late season (with one-third of them in December), and at lower latitudes (7° latitude lower than the climatological average formation position). The evolution of mesoscale features during formation of trade wind surge tropical cyclones is examined. Various satellite datasets show similar mesoscale patterns during their formations. A few convective lines form by convergence between the trade wind surges and the strengthening cyclonic circulation associated with incipient vortex within the 24 h before formation. Some mesoscale convective systems are embedded in the convective line with lifetimes of about 5 h, and these are illustrated through case studies. Formations usually occur when the trade winds start to decrease in magnitude and a short period after the major episodes of convection in the convective lines and mesoscale convective systems. The relationships between the temporal variability of synoptic-scale trade wind surges, the mesoscale features, and associated tropical cyclone formations are discussed.

2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2011 ◽  
Vol 139 (9) ◽  
pp. 2723-2734 ◽  
Author(s):  
Carl J. Schreck ◽  
John Molinari

The Madden–Julian oscillation (MJO) influences tropical cyclone formation around the globe. Convectively coupled Kelvin waves are often embedded within the MJO, but their role in tropical cyclogenesis remains uncertain. This case study identifies the influences of the MJO and a series of Kelvin waves on the formation of two tropical cyclones. Typhoons Rammasun and Chataan developed in the western North Pacific on 28 June 2002. Two weeks earlier, conditions had been unfavorable for tropical cyclogenesis because of uniform trade easterlies and a lack of organized convection. The easterlies gave way to equatorial westerlies as the convective envelope of the Madden–Julian oscillation moved into the region. A series of three Kelvin waves modulated the development of the westerlies. Cyclonic potential vorticity (PV) developed in a strip between the growing equatorial westerlies and the persistent trade easterlies farther poleward. Rammasun and Chataan emerged from the apparent breakdown of this strip. The cyclonic PV developed in association with diabatic heating from both the MJO and the Kelvin waves. The tropical cyclones also developed during the largest superposition of equatorial westerlies from the MJO and the Kelvin waves. This chain of events suggests that the MJO and the Kelvin waves each played a role in the development of Rammasun and Chataan.


2012 ◽  
Vol 140 (3) ◽  
pp. 774-788 ◽  
Author(s):  
Carl J. Schreck ◽  
John Molinari ◽  
Anantha Aiyyer

Abstract This study investigates the number of tropical cyclone formations that can be attributed to the enhanced convection from equatorial waves within each basin. Tropical depression (TD)-type disturbances (i.e., easterly waves) were the primary tropical cyclone precursors over the Northern Hemisphere basins, particularly the eastern North Pacific and the Atlantic. In the Southern Hemisphere, however, the number of storms attributed to TD-type disturbances and equatorial Rossby waves were roughly equivalent. Equatorward of 20°N, tropical cyclones formed without any equatorial wave precursor most often over the eastern North Pacific and least often over the western North Pacific. The Madden–Julian oscillation (MJO) was an important tropical cyclone precursor over the north Indian, south Indian, and western North Pacific basins. The MJO also affected tropical cyclogenesis by modulating the amplitudes of higher-frequency waves. Each wave type reached the attribution threshold 1.5 times more often, and tropical cyclogenesis was 3 times more likely, within positive MJO-filtered rainfall anomalies than within negative anomalies. The greatest MJO modulation was observed for storms attributed to Kelvin waves over the north Indian Ocean. The large rainfall rates associated with tropical cyclones can alter equatorial wave–filtered anomalies. This study quantifies the contamination over each basin. Tropical cyclones contributed more than 20% of the filtered variance for each wave type over large potions of every basin except the South Pacific. The largest contamination, exceeding 60%, occurred for the TD band near the Philippines. To mitigate the contamination, the tropical cyclone–related anomalies were removed before filtering in this study.


2018 ◽  
Vol 31 (3) ◽  
pp. 1015-1028 ◽  
Author(s):  
Jia Liang ◽  
Liguang Wu ◽  
Guojun Gu

Abstract As one major source of forecasting errors in tropical cyclone intensity, rapid weakening of tropical cyclones [an intensity reduction of 20 kt (1 kt = 0.51 m s−1) or more over a 24-h period] over the tropical open ocean can result from the interaction between tropical cyclones and monsoon gyres. This study aims to examine rapid weakening events occurring in monsoon gyres in the tropical western North Pacific (WNP) basin during May–October 2000–14. Although less than one-third of rapid weakening events happened in the tropical WNP basin south of 25°N, more than 40% of them were associated with monsoon gyres. About 85% of rapid weakening events in monsoon gyres occurred in September and October. The rapid weakening events associated with monsoon gyres are usually observed near the center of monsoon gyres when tropical cyclone tracks make a sudden northward turn. The gyres can enlarge the outer size of tropical cyclones and tend to induce prolonged rapid weakening events with an average duration of 33.2 h. Large-scale environmental factors, including sea surface temperature changes, vertical wind shear, and midlevel environmental humidity, are not primary contributors to them, suggesting the possible effect of monsoon gyres on these rapid weakening events by modulating the tropical cyclone structure. This conclusion is conducive to improving operational forecasts of tropical cyclone intensity.


2005 ◽  
Vol 18 (15) ◽  
pp. 2996-3006 ◽  
Author(s):  
Suzana J. Camargo ◽  
Adam H. Sobel

Abstract The influence of the El Niño–Southern Oscillation (ENSO) on tropical cyclone intensity in the western North Pacific basin is examined. Accumulated cyclone energy (ACE), constructed from the best-track dataset for the region for the period 1950–2002, and other related variables are analyzed. ACE is positively correlated with ENSO indices. This and other statistics of the interannually varying tropical cyclone distribution are used to show that there is a tendency in El Niño years toward tropical cyclones that are both more intense and longer-lived than in La Niña years. ACE leads ENSO indices: during the peak season (northern summer and fall), ACE is correlated approximately as strongly with ENSO indices up to six months later (northern winter), as well as simultaneously. It appears that not all of this lead–lag relationship is easily explained by the autocorrelation of the ENSO indices, though much of it is. Interannual variations in the annual mean lifetime, intensity, and number of tropical cyclones all contribute to the ENSO signal in ACE, though the lifetime effect appears to be the most important of the three.


2009 ◽  
Vol 137 (4) ◽  
pp. 1295-1319 ◽  
Author(s):  
Patrick A. Harr ◽  
Jonathan M. Dea

Abstract The movement of a tropical cyclone into the midlatitudes involves interactions among many complex physical processes over a variety of space and time scales. Furthermore, the extratropical transition (ET) of a tropical cyclone may also result in a high-amplitude Rossby wave response that can extend to near-hemispheric scales. After an ET event occurs over the western portion of a Northern Hemisphere ocean basin, the high-amplitude downstream response often forces anomalous midlatitude circulations for periods of days to a week. These circulations may then be related to high-impact weather events far downstream of the forcing by the ET event. In this study, downstream development following ET events over the western North Pacific Ocean is examined. Local eddy kinetic energy analyses are conducted on four cases of North Pacific tropical cyclones of varying characteristics during ET into varying midlatitude flow characteristics during 15 July–30 September 2005. The goal is to examine the impact of each case on downstream development across the North Pacific during a period in which these events might increase the midlatitude cyclogenesis across the North Pacific during a season in which cyclogenesis is typically weak. Four typhoon (TY) cases from the summer of 2005 are chosen to represent the wide spectrum of variability in ET. This includes a case (TY Nabi 14W) that directly resulted in an intense midlatitude cyclone, a case in which a weak midlatitude cyclone resulted (TY Banyan 07W), a case in which the decaying tropical cyclone was absorbed into the midlatitude flow (TY Guchol 12W), and a case (TY Saola 17W) in which the tropical cyclone decayed under the influence of strong vertical wind shear. The variability in downstream response to each ET case is related to specific physical characteristics associated with the evolution of the ET process and the phasing between the poleward-moving tropical cyclone and the midlatitude circulation into which it is moving. A case of downstream development that occurred during September 2005 without an ET event is compared with the four ET cases.


2016 ◽  
Vol 56 ◽  
pp. 10.1-10.5 ◽  
Author(s):  
Andrew J. Majda ◽  
Samuel N. Stechmann

Abstract It is well known that the envelope of the Madden–Julian oscillation (MJO) consists of smaller-scale convective systems, including mesoscale convective systems (MCS), tropical cyclones, and synoptic-scale waves called “convectively coupled equatorial waves” (CCW). In fact, recent results suggest that the fundamental mechanisms of the MJO involve interactions between the synoptic-scale CCW and their larger-scale environment (Majda and Stechmann). In light of this, this chapter reviews recent and past work on two-way interactions between convective systems—both MCSs and CCW—and their larger-scale environment, with a particular focus given to recent work on MJO–CCW interactions.


Sign in / Sign up

Export Citation Format

Share Document