scholarly journals Mesoscale Convective Systems and Early Development of Tropical Cyclones

Author(s):  
Kevin K.W. Cheung ◽  
Guoping Zhang
2010 ◽  
Vol 138 (11) ◽  
pp. 4120-4134 ◽  
Author(s):  
Lung-Yao Chang ◽  
Kevin K. W. Cheung ◽  
Cheng-Shang Lee

Abstract A total of 40 out of 531 tropical cyclones that formed in the western North Pacific during 1986–2005 have accompanied trade wind surges located 5°–15° latitude to the north of the pretropical cyclone disturbance centers. Composite and empirical orthogonal function analyses indicate that the trade wind surges are related to a midlatitude eastward-moving high pressure system often found during the East Asian winter monsoon. Therefore, these trade wind surge tropical cyclones tend to occur in late season (with one-third of them in December), and at lower latitudes (7° latitude lower than the climatological average formation position). The evolution of mesoscale features during formation of trade wind surge tropical cyclones is examined. Various satellite datasets show similar mesoscale patterns during their formations. A few convective lines form by convergence between the trade wind surges and the strengthening cyclonic circulation associated with incipient vortex within the 24 h before formation. Some mesoscale convective systems are embedded in the convective line with lifetimes of about 5 h, and these are illustrated through case studies. Formations usually occur when the trade winds start to decrease in magnitude and a short period after the major episodes of convection in the convective lines and mesoscale convective systems. The relationships between the temporal variability of synoptic-scale trade wind surges, the mesoscale features, and associated tropical cyclone formations are discussed.


2016 ◽  
Vol 56 ◽  
pp. 10.1-10.5 ◽  
Author(s):  
Andrew J. Majda ◽  
Samuel N. Stechmann

Abstract It is well known that the envelope of the Madden–Julian oscillation (MJO) consists of smaller-scale convective systems, including mesoscale convective systems (MCS), tropical cyclones, and synoptic-scale waves called “convectively coupled equatorial waves” (CCW). In fact, recent results suggest that the fundamental mechanisms of the MJO involve interactions between the synoptic-scale CCW and their larger-scale environment (Majda and Stechmann). In light of this, this chapter reviews recent and past work on two-way interactions between convective systems—both MCSs and CCW—and their larger-scale environment, with a particular focus given to recent work on MJO–CCW interactions.


2016 ◽  
Vol 82 (2) ◽  
pp. 963-979
Author(s):  
Suman Goyal ◽  
M. Mohapatra ◽  
S. K. Dube ◽  
Priyanka Kumari ◽  
Ipshita De

2021 ◽  
Vol 256 ◽  
pp. 105580
Author(s):  
Dongxia Liu ◽  
Mengyu Sun ◽  
Debin Su ◽  
Wenjing Xu ◽  
Han Yu ◽  
...  

2006 ◽  
Vol 21 (2) ◽  
pp. 125-148 ◽  
Author(s):  
Hyung Woo Kim ◽  
Dong Kyou Lee

Abstract A heavy rainfall event induced by mesoscale convective systems (MCSs) occurred over the middle Korean Peninsula from 25 to 27 July 1996. This heavy rainfall caused a large loss of life and property damage as a result of flash floods and landslides. An observational study was conducted using Weather Surveillance Radar-1988 Doppler (WSR-88D) data from 0930 UTC 26 July to 0303 UTC 27 July 1996. Dominant synoptic features in this case had many similarities to those in previous studies, such as the presence of a quasi-stationary frontal system, a weak upper-level trough, sufficient moisture transportation by a low-level jet from a tropical storm landfall, strong potential and convective instability, and strong vertical wind shear. The thermodynamic characteristics and wind shear presented favorable conditions for a heavy rainfall occurrence. The early convective cells in the MCSs initiated over the coastal area, facilitated by the mesoscale boundaries of the land–sea contrast, rain–no rain regions, saturated–unsaturated soils, and steep horizontal pressure and thermal gradients. Two MCSs passed through the heavy rainfall regions during the investigation period. The first MCS initiated at 1000 UTC 26 July and had the characteristics of a supercell storm with small amounts of precipitation, the appearance of a mesocyclone with tilting storm, a rear-inflow jet at the midlevel of the storm, and fast forward propagation. The second MCS initiated over the upstream area of the first MCS at 1800 UTC 26 July and had the characteristics of a multicell storm, such as a broken areal-type squall line, slow or quasi-stationary backward propagation, heavy rainfall in a concentrated area due to the merging of the convective storms, and a stagnated cluster system. These systems merged and stagnated because their movement was blocked by the Taebaek Mountain Range, and they continued to develop because of the vertical wind shear resulting from a low-level easterly inflow.


1995 ◽  
Vol 100 (D8) ◽  
pp. 16341 ◽  
Author(s):  
Monte G. Bateman ◽  
W. David Rust ◽  
Bradley F. Smull ◽  
Thomas C. Marshall

Sign in / Sign up

Export Citation Format

Share Document