Probabilistic Visibility Forecasting Using Bayesian Model Averaging

2011 ◽  
Vol 139 (5) ◽  
pp. 1626-1636 ◽  
Author(s):  
Richard M. Chmielecki ◽  
Adrian E. Raftery

Bayesian model averaging (BMA) is a statistical postprocessing technique that has been used in probabilistic weather forecasting to calibrate forecast ensembles and generate predictive probability density functions (PDFs) for weather quantities. The authors apply BMA to probabilistic visibility forecasting using a predictive PDF that is a mixture of discrete point mass and beta distribution components. Three approaches to developing predictive PDFs for visibility are developed, each using BMA to postprocess an ensemble of visibility forecasts. In the first approach, the ensemble is generated by a translation algorithm that converts predicted concentrations of hydrometeorological variables into visibility. The second approach augments the raw ensemble visibility forecasts with model forecasts of relative humidity and quantitative precipitation. In the third approach, the ensemble members are generated from relative humidity and precipitation alone. These methods are applied to 12-h ensemble forecasts from 2007 to 2008 and are tested against verifying observations recorded at Automated Surface Observing Stations in the Pacific Northwest. Each of the three methods produces predictive PDFs that are calibrated and sharp with respect to both climatology and the raw ensemble.

2005 ◽  
Vol 133 (5) ◽  
pp. 1155-1174 ◽  
Author(s):  
Adrian E. Raftery ◽  
Tilmann Gneiting ◽  
Fadoua Balabdaoui ◽  
Michael Polakowski

Abstract Ensembles used for probabilistic weather forecasting often exhibit a spread-error correlation, but they tend to be underdispersive. This paper proposes a statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), which is a standard method for combining predictive distributions from different sources. The BMA predictive probability density function (PDF) of any quantity of interest is a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights are equal to posterior probabilities of the models generating the forecasts and reflect the models' relative contributions to predictive skill over the training period. The BMA weights can be used to assess the usefulness of ensemble members, and this can be used as a basis for selecting ensemble members; this can be useful given the cost of running large ensembles. The BMA PDF can be represented as an unweighted ensemble of any desired size, by simulating from the BMA predictive distribution. The BMA predictive variance can be decomposed into two components, one corresponding to the between-forecast variability, and the second to the within-forecast variability. Predictive PDFs or intervals based solely on the ensemble spread incorporate the first component but not the second. Thus BMA provides a theoretical explanation of the tendency of ensembles to exhibit a spread-error correlation but yet be underdispersive. The method was applied to 48-h forecasts of surface temperature in the Pacific Northwest in January–June 2000 using the University of Washington fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) ensemble. The predictive PDFs were much better calibrated than the raw ensemble, and the BMA forecasts were sharp in that 90% BMA prediction intervals were 66% shorter on average than those produced by sample climatology. As a by-product, BMA yields a deterministic point forecast, and this had root-mean-square errors 7% lower than the best of the ensemble members and 8% lower than the ensemble mean. Similar results were obtained for forecasts of sea level pressure. Simulation experiments show that BMA performs reasonably well when the underlying ensemble is calibrated, or even overdispersed.


2010 ◽  
Vol 138 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Chris Fraley ◽  
Adrian E. Raftery ◽  
Tilmann Gneiting

Abstract Bayesian model averaging (BMA) is a statistical postprocessing technique that generates calibrated and sharp predictive probability density functions (PDFs) from forecast ensembles. It represents the predictive PDF as a weighted average of PDFs centered on the bias-corrected ensemble members, where the weights reflect the relative skill of the individual members over a training period. This work adapts the BMA approach to situations that arise frequently in practice; namely, when one or more of the member forecasts are exchangeable, and when there are missing ensemble members. Exchangeable members differ in random perturbations only, such as the members of bred ensembles, singular vector ensembles, or ensemble Kalman filter systems. Accounting for exchangeability simplifies the BMA approach, in that the BMA weights and the parameters of the component PDFs can be assumed to be equal within each exchangeable group. With these adaptations, BMA can be applied to postprocess multimodel ensembles of any composition. In experiments with surface temperature and quantitative precipitation forecasts from the University of Washington mesoscale ensemble and ensemble Kalman filter systems over the Pacific Northwest, the proposed extensions yield good results. The BMA method is robust to exchangeability assumptions, and the BMA postprocessed combined ensemble shows better verification results than any of the individual, raw, or BMA postprocessed ensemble systems. These results suggest that statistically postprocessed multimodel ensembles can outperform individual ensemble systems, even in cases in which one of the constituent systems is superior to the others.


2012 ◽  
Vol 20 (3) ◽  
pp. 271-291 ◽  
Author(s):  
Jacob M. Montgomery ◽  
Florian M. Hollenbach ◽  
Michael D. Ward

We present ensemble Bayesian model averaging (EBMA) and illustrate its ability to aid scholars in the social sciences to make more accurate forecasts of future events. In essence, EBMA improves prediction by pooling information from multiple forecast models to generate ensemble predictions similar to a weighted average of component forecasts. The weight assigned to each forecast is calibrated via its performance in some validation period. The aim is not to choose some “best” model, but rather to incorporate the insights and knowledge implicit in various forecasting efforts via statistical postprocessing. After presenting the method, we show that EBMA increases the accuracy of out-of-sample forecasts relative to component models in three applied examples: predicting the occurrence of insurgencies around the Pacific Rim, forecasting vote shares in U.S. presidential elections, and predicting the votes of U.S. Supreme Court Justices.


2007 ◽  
Vol 135 (9) ◽  
pp. 3209-3220 ◽  
Author(s):  
J. Mc Lean Sloughter ◽  
Adrian E. Raftery ◽  
Tilmann Gneiting ◽  
Chris Fraley

Abstract Bayesian model averaging (BMA) is a statistical way of postprocessing forecast ensembles to create predictive probability density functions (PDFs) for weather quantities. It represents the predictive PDF as a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights are posterior probabilities of the models generating the forecasts and reflect the forecasts’ relative contributions to predictive skill over a training period. It was developed initially for quantities whose PDFs can be approximated by normal distributions, such as temperature and sea level pressure. BMA does not apply in its original form to precipitation, because the predictive PDF of precipitation is nonnormal in two major ways: it has a positive probability of being equal to zero, and it is skewed. In this study BMA is extended to probabilistic quantitative precipitation forecasting. The predictive PDF corresponding to one ensemble member is a mixture of a discrete component at zero and a gamma distribution. Unlike methods that predict the probability of exceeding a threshold, BMA gives a full probability distribution for future precipitation. The method was applied to daily 48-h forecasts of 24-h accumulated precipitation in the North American Pacific Northwest in 2003–04 using the University of Washington mesoscale ensemble. It yielded predictive distributions that were calibrated and sharp. It also gave probability of precipitation forecasts that were much better calibrated than those based on consensus voting of the ensemble members. It gave better estimates of the probability of high-precipitation events than logistic regression on the cube root of the ensemble mean.


2013 ◽  
Vol 141 (6) ◽  
pp. 2107-2119 ◽  
Author(s):  
J. McLean Sloughter ◽  
Tilmann Gneiting ◽  
Adrian E. Raftery

Abstract Probabilistic forecasts of wind vectors are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Unlike other common forecasting problems, which deal with univariate quantities, statistical approaches to wind vector forecasting must be based on bivariate distributions. The prevailing paradigm in weather forecasting is to issue deterministic forecasts based on numerical weather prediction models. Uncertainty can then be assessed through ensemble forecasts, where multiple estimates of the current state of the atmosphere are used to generate a collection of deterministic predictions. Ensemble forecasts are often uncalibrated, however, and Bayesian model averaging (BMA) is a statistical way of postprocessing these forecast ensembles to create calibrated predictive probability density functions (PDFs). It represents the predictive PDF as a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights reflect the forecasts’ relative contributions to predictive skill over a training period. In this paper the authors extend the BMA methodology to use bivariate distributions, enabling them to provide probabilistic forecasts of wind vectors. The BMA method is applied to 48-h-ahead forecasts of wind vectors over the North American Pacific Northwest in 2003 using the University of Washington mesoscale ensemble and is shown to provide better-calibrated probabilistic forecasts than the raw ensemble, which are also sharper than probabilistic forecasts derived from climatology.


2010 ◽  
Vol 138 (11) ◽  
pp. 4199-4211 ◽  
Author(s):  
Maurice J. Schmeits ◽  
Kees J. Kok

Abstract Using a 20-yr ECMWF ensemble reforecast dataset of total precipitation and a 20-yr dataset of a dense precipitation observation network in the Netherlands, a comparison is made between the raw ensemble output, Bayesian model averaging (BMA), and extended logistic regression (LR). A previous study indicated that BMA and conventional LR are successful in calibrating multimodel ensemble forecasts of precipitation for a single forecast projection. However, a more elaborate comparison between these methods has not yet been made. This study compares the raw ensemble output, BMA, and extended LR for single-model ensemble reforecasts of precipitation; namely, from the ECMWF ensemble prediction system (EPS). The raw EPS output turns out to be generally well calibrated up to 6 forecast days, if compared to the area-mean 24-h precipitation sum. Surprisingly, BMA is less skillful than the raw EPS output from forecast day 3 onward. This is due to the bias correction in BMA, which applies model output statistics to individual ensemble members. As a result, the spread of the bias-corrected ensemble members is decreased, especially for the longer forecast projections. Here, an additive bias correction is applied instead and the equation for the probability of precipitation in BMA is also changed. These modifications to BMA are referred to as “modified BMA” and lead to a significant improvement in the skill of BMA for the longer projections. If the area-maximum 24-h precipitation sum is used as a predictand, both modified BMA and extended LR improve the raw EPS output significantly for the first 5 forecast days. However, the difference in skill between modified BMA and extended LR does not seem to be statistically significant. Yet, extended LR might be preferred, because incorporating predictors that are different from the predictand is straightforward, in contrast to BMA.


2007 ◽  
Vol 135 (4) ◽  
pp. 1364-1385 ◽  
Author(s):  
Laurence J. Wilson ◽  
Stephane Beauregard ◽  
Adrian E. Raftery ◽  
Richard Verret

Abstract Bayesian model averaging (BMA) has recently been proposed as a way of correcting underdispersion in ensemble forecasts. BMA is a standard statistical procedure for combining predictive distributions from different sources. The output of BMA is a probability density function (pdf), which is a weighted average of pdfs centered on the bias-corrected forecasts. The BMA weights reflect the relative contributions of the component models to the predictive skill over a training sample. The variance of the BMA pdf is made up of two components, the between-model variance, and the within-model error variance, both estimated from the training sample. This paper describes the results of experiments with BMA to calibrate surface temperature forecasts from the 16-member Canadian ensemble system. Using one year of ensemble forecasts, BMA was applied for different training periods ranging from 25 to 80 days. The method was trained on the most recent forecast period, then applied to the next day’s forecasts as an independent sample. This process was repeated through the year, and forecast quality was evaluated using rank histograms, the continuous rank probability score, and the continuous rank probability skill score. An examination of the BMA weights provided a useful comparative evaluation of the component models, both for the ensemble itself and for the ensemble augmented with the unperturbed control forecast and the higher-resolution deterministic forecast. Training periods around 40 days provided a good calibration of the ensemble dispersion. Both full regression and simple bias-correction methods worked well to correct the bias, except that the full regression failed to completely remove seasonal trend biases in spring and fall. Simple correction of the bias was sufficient to produce positive forecast skill out to 10 days with respect to climatology, which was improved by the BMA. The addition of the control forecast and the full-resolution model forecast to the ensemble produced modest improvement in the forecasts for ranges out to about 7 days. Finally, BMA produced significantly narrower 90% prediction intervals compared to a simple Gaussian bias correction, while achieving similar overall accuracy.


Sign in / Sign up

Export Citation Format

Share Document