scholarly journals Dynamical Downscaling of Wind Speed in Complex Terrain Prone To Bora-Type Flows

2011 ◽  
Vol 50 (8) ◽  
pp. 1676-1691 ◽  
Author(s):  
Kristian Horvath ◽  
Alica Bajić ◽  
Stjepan Ivatek-Šahdan

AbstractThe results of numerically modeled wind speed climate, a primary component of wind energy resource assessment in the complex terrain of Croatia, are given. For that purpose, dynamical downscaling of 10 yr (1992–2001) of the 40-yr ECMWF Re-Analysis (ERA-40) was performed to 8-km horizontal grid spacing with the use of a spectral, prognostic full-physics model Aire Limitée Adaptation Dynamique Développement International (ALADIN; the “ALHR” version). Then modeled data with a 60-min frequency were refined to 2-km horizontal grid spacing with a simplified and cost-effective model version, the so-called dynamical adaptation (DADA). The statistical verification of ERA-40-, ALHR-, and DADA-modeled wind speed on the basis of data from measurement stations representing different regions of Croatia suggests that downscaling was successful and that model accuracy generally improves as horizontal resolution is increased. The areas of the highest mean wind speeds correspond well to locations of frequent and strong bora flow as well as to the prominent mountain peaks. The best results are achieved with DADA and contain bias of 1% of the mean wind speed for eastern Croatia while reaching 10% for complex coastal terrain, mainly because of underestimation of the strongest winds. Root-mean-square errors for DADA are significantly smaller for flat terrain than for complex terrain, with relative values close to 12% of the mean wind speed regardless of the station location. Spectral analyses suggest that the shape of the kinetic energy spectra generally relaxes from k−3 at the upper troposphere to the shape of orographic spectra near the surface and shows no seasonal variability. Apart from the buildup of energy on smaller scales of motions, it is shown that mesoscale simulations contain a considerable amount of energy related to near-surface and mostly divergent meso-β-scale (20–200 km) motions. Spectral decomposition of measured and modeled data in temporal space indicates a reasonable performance of all model datasets in simulating the primary maximum of spectral power related to synoptic and larger-than-diurnal mesoscale motions, with somewhat increased accuracy of mesoscale model data. The primary improvement of dynamical adaptation was achieved for cross-mountain winds, whereas mixed results were found for along-mountain wind directions. Secondary diurnal and tertiary semidiurnal maxima are significantly better simulated with the mesoscale model for coastal stations but are somewhat more erroneous for the continental station. The mesoscale model data underestimate the spectral power of motions with less-than-semidiurnal periods.

2020 ◽  
Vol 13 (10) ◽  
pp. 5079-5102 ◽  
Author(s):  
Martin Dörenkämper ◽  
Bjarke T. Olsen ◽  
Björn Witha ◽  
Andrea N. Hahmann ◽  
Neil N. Davis ◽  
...  

Abstract. This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). In Part 1, we described the sensitivity experiments and accompanying evaluation done to arrive at the final mesoscale model setup used to produce the mesoscale wind atlas. In this paper, Part 2, we document how we made the final wind atlas product, covering both the production of the mesoscale climatology generated with the Weather Research and Forecasting (WRF) model and the microscale climatology generated with the Wind Atlas Analysis and Applications Program (WAsP). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the downscaling using WAsP. We show the main results from the final wind atlas and present a comprehensive evaluation of each component of the NEWA model chain using observations from a large set of tall masts located all over Europe. The added value of the WRF and WAsP downscaling of wind climatologies is evaluated relative to the performance of the driving ERA5 reanalysis and shows that the WRF downscaling reduces the mean wind speed bias and spread relative to that of ERA5 from -1.50±1.30 to 0.02±0.78 m s−1. The WAsP downscaling has an added positive impact relative to that of the WRF model in simple terrain. In complex terrain, where the assumptions of the linearized flow model break down, both the mean bias and spread in wind speed are worse than those from the raw mesoscale results.


2021 ◽  
Author(s):  
Julian Quimbayo-Duarte ◽  
Johannes Wagner ◽  
Norman Wildmann ◽  
Thomas Gerz ◽  
Juerg Schmidli

Abstract. We evaluate the influence of a forest parametrization on the simulation of the boundary layer flow over moderate complex terrain in the context of the Perdigão 2017 field campaign. The numerical simulations are performed using the Weather research and forecasting model using its large eddy simulation mode (WRF-LES). The short-term high resolution (40 m horizontal grid spacing) and long-term (200 m horizontal grid spacing) WRF-LES are evaluated for an integration time of 12 hours and 1.5 months, respectively, with and without forest parameterization. The short-term simulations focus on low-level jet events over the valley, while the long-term simulations cover the whole intensive observation period (IOP) of the field campaign. The results are validated using lidar and meteorological tower observations. The mean diurnal cycle during the IOP shows a significant improvement of the along-valley wind speed and the wind direction when using the forest parametrization. However, the drag imposed by the parametrization results in an underestimation of the cross-valley wind speed, which can be attributed to a poor representation of the land surface characteristics. The evaluation of the high-resolution WRF-LES shows a positive influence of the forest parametrization on the simulated winds in the first 500 m above the surface.


2020 ◽  
Author(s):  
Martin Dörenkämper ◽  
Bjarke T. Olsen ◽  
Björn Witha ◽  
Andrea N. Hahmann ◽  
Neil N. Davis ◽  
...  

Abstract. This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). In Part 1, we described the sensitivity experiments and accompanying evaluation done to arrive at the final mesoscale model setup used to produce the mesoscale wind atlas. In this paper, Part 2, we document how we made the final wind atlas product, covering both the production of the mesoscale climatology generated with the Weather Research and Forecasting (WRF) model and the microscale climatology generated with the Wind Atlas Analysis and Applications Program (WAsP). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the downscaling using WAsP. We show the main results from the final wind atlas and present a comprehensive evaluation of each component of the NEWA model chain using observations from a large set of tall masts located all over Europe. The added value of the WRF and WAsP downscaling of wind climatologies is evaluated relative to the performance of the driving ERA5 reanalysis and shows that the WRF downscaling reduces the mean wind speed bias and spread relative to that of ERA5 from −1.50 ± 1.30 to 0.02 ± 0.78 ms−1. The WAsP downscaling has an added positive impact relative to that of the WRF model in simple terrain. In complex terrain, where the assumptions of the linearised flow model break down, both the mean bias and spread in wind speed are worse than the mesoscale results.


2011 ◽  
Vol 6 (1) ◽  
pp. 155-159 ◽  
Author(s):  
R. Floors ◽  
E. Batchvarova ◽  
S.-E. Gryning ◽  
A. N. Hahmann ◽  
A. Peña ◽  
...  

Abstract. Wind profiles up to 600 m height are investigated. Measurements of mean wind speed profiles were obtained from a novel wind lidar and compared to model simulations from a mesoscale model (WRF-ARW v3.1). It is found that WRF is able to predict the mean wind profile rather well and typically within 1–2 m s−1 to the individual measured values. WRF underpredicts the normalized wind profile, especially for stable conditions. The effect of baroclinicity on the upper part of the wind profile is discussed.


2001 ◽  
Vol 123 (4) ◽  
pp. 339-345 ◽  
Author(s):  
P. J. Moriarty ◽  
A. J. Eggers, ◽  
K. Chaney ◽  
W. E. Holley

The effects of rotor scale and control system lag were examined for a variable-speed wind turbine. The scale study was performed on a teetered rotor with radii ranging between 22.5m and 33.75m. A 50% increase in radius more than doubled the rated power and annual energy capture. Using blade pitch to actively control fluctuating flatwise moments allowed for significant reductions in blade mass for a fixed fatigue life. A blade operated in closed-loop mode with a 33.75m radius weighed less than an open-loop blade with a 22.5m radius while maintaining the same fatigue life of 5×109 rotations. Actuator lag reduced the effectiveness of the control system. However, 50% reductions in blade mass were possible even when implementing a relatively slow actuator with a 1 sec. time constant. Other practical limits on blade mass may include fatigue from start/stop cycles, non-uniform turbulence, tower wake effects, and wind shear. The more aggressive control systems were found to have high control accelerations near 60 deg/s2, which may be excessive for realistic actuators. Two time lags were introduced into the control system when mean wind speed was estimated in a rapidly changing wind environment. The first lag was the length of time needed to determine mean wind speed, and therefore the mean control settings. The second was the frequency at which these mean control settings were changed. Preliminary results indicate that quickly changing the mean settings (every 10 seconds) and using a moderate length mean averaging time (60 seconds) resulted in the longest fatigue life. It was discovered that large power fluctuations occurred during open-loop operation which could cause sizeable damage to a realistic turbine generator. These fluctuations are reduced by one half or more when aerodynamic loads are actively controlled.


2009 ◽  
Vol 137 (2) ◽  
pp. 745-765 ◽  
Author(s):  
Kevin A. Hill ◽  
Gary M. Lackmann

Abstract The Weather Research and Forecasting Advanced Research Model (WRF-ARW) was used to perform idealized tropical cyclone (TC) simulations, with domains of 36-, 12-, and 4-km horizontal grid spacing. Tests were conducted to determine the sensitivity of TC intensity to the available surface layer (SL) and planetary boundary layer (PBL) parameterizations, including the Yonsei University (YSU) and Mellor–Yamada–Janjic (MYJ) schemes, and to horizontal grid spacing. Simulations were run until a quasi-steady TC intensity was attained. Differences in minimum central pressure (Pmin) of up to 35 hPa and maximum 10-m wind (V10max) differences of up to 30 m s−1 were present between a convection-resolving nested domain with 4-km grid spacing and a parent domain with cumulus parameterization and 36-km grid spacing. Simulations using 4-km grid spacing are the most intense, with the maximum intensity falling close to empirical estimates of maximum TC intensity. Sensitivity to SL and PBL parameterization also exists, most notably in simulations with 4-km grid spacing, where the maximum intensity varied by up to ∼10 m s−1 (V10max) or ∼13 hPa (Pmin). Values of surface latent heat flux (LHFLX) are larger in MYJ than in YSU at the same wind speeds, and the differences increase with wind speed, approaching 1000 W m−2 at wind speeds in excess of 55 m s−1. This difference was traced to a larger exchange coefficient for moisture, CQ, in the MYJ scheme. The exchange coefficients for sensible heat (Cθ) and momentum (CD) varied by <7% between the SL schemes at the same wind speeds. The ratio Cθ/CD varied by <5% between the schemes, whereas CQ/CD was up to 100% larger in MYJ, and the latter is theorized to contribute to the differences in simulated maximum intensity. Differences in PBL scheme mixing also likely played a role in the model sensitivity. Observations of the exchange coefficients, published elsewhere and limited to wind speeds <30 m s−1, suggest that CQ is too large in the MYJ SL scheme, whereas YSU incorporates values more consistent with observations. The exchange coefficient for momentum increases linearly with wind speed in both schemes, whereas observations suggest that the value of CD becomes quasi-steady beyond some critical wind speed (∼30 m s−1).


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 776 ◽  
Author(s):  
Ziqi Zhao ◽  
Lidu Shen ◽  
Liguang Li ◽  
Hongbo Wang ◽  
Bao-Jie He

Studies on urban ventilation indicate that urban ventilation performance is highly dependent on urban morphology. Some studies have linked local-scale urban ventilation performance with the local climate zone (LCZ) that is proposed for surface temperature studies. However, there is a lack of evidence-based studies showing LCZ ventilation performance and affirming the reliability of using the LCZ classification scheme to demonstrate local-scale urban ventilation performance. Therefore, this study aims to analyse LCZ ventilation performances in order to understand the suitability of using the LCZ classification scheme to indicate local-scale urban ventilation performance. This study was conducted in Shenyang, China, with wind information at 16 weather stations in 2018. The results indicate that the Shenyang weather station had an annual mean wind speed of 2.07 m/s, while the mean wind speed of the overall 16 stations was much lower, only 1.44 m/s in value. The mean wind speed at Shenyang weather station and the 16 stations varied with seasons, day and night and precipitation conditions. The spring diurnal mean wind was strong with the speeds of 3.56 m/s and 2.21 m/s at Shenyang weather station and the 16 stations, respectively. The wind speed (2.21 m/s at Shenyang weather station) under precipitation conditions was higher than that (1.75 m/s at Shenyang weather station) under no precipitation conditions. Downtown ventilation performance was weaker than the approaching wind background, where the relative mean wind speed in the downtown area was only 0.53, much less than 1.0. The downtown ventilation performance also varied with seasons, day and night and precipitation conditions, where spring diurnal downtown ventilation performance was the weakest and the winter nocturnal downtown ventilation performance was the strongest. Moreover, the annual mean wind speed of the 16 zones decreased from the sparse, open low-rise zones to the compact midrise zones, indicating the suitability of using LCZ classification scheme to indicate local-scale urban ventilation performance. The high spatial correlation coefficients under different seasons, day and night and precipitation conditions, ranging between 0.68 and 0.99, further affirmed that LCZ classification scheme is also suitable to indicate local-scale urban ventilation performance, despite without the consideration of street structure like precinct ventilation zone scheme.


2018 ◽  
Vol 21 (15) ◽  
pp. 2217-2226 ◽  
Author(s):  
YC Kim ◽  
Y Tamura ◽  
A Yoshida ◽  
T Ito ◽  
W Shan ◽  
...  

The general characteristics of aerodynamic vibrations of a solar wing system were investigated through wind tunnel tests using an aeroelastic model under four oncoming flows. In total, 12 solar panels were suspended by cables and orientated horizontally. Distances between panels were set constant. Tests showed that the fluctuating displacement increases proportionally to the square of the mean wind speed for all wind directions in boundary-layer flows. Larger fluctuating displacements were found for boundary-layer flows with larger power-law indices. Under low-turbulence flow, the fluctuating displacement increased proportionally to the square of the mean wind speed for wind directions between 0° and 30°, but an instability vibration was observed at high mean wind speed for wind directions larger than 40°. And when the wind direction was larger than 60°, a limited vibration was observed at low mean wind speed and the instability vibration was also observed at high mean wind speed. Fluctuating displacements under grid-generated flow showed a similar trend to that of the boundary-layer flows, although the values became much smaller.


2020 ◽  
Author(s):  
Andrea Schneidereit ◽  
Hauke Schmidt ◽  
Claudia Stephan

<p>Several current general atmospheric circulation models provide sufficiently high resolutions to resolve important parts of the internal gravity wave spectrum allowing for numerical experiments without GW drag parameterizations. GWs start to be well resolved from horizontal wavelengths of about 7 times the horizontal grid spacing. How much does the resolved wave spectrum and its forcing on the mean circulation depend on the vertical resolution?</p><p>−1,The middle atmosphere summer hemisphere provides a suitable background to investigate this question. The mean stratospheric and mesospheric circulation is characterised by prevailing easterlies which prevent planetary wave propagation upwards and represents a mean state driven by IGWs. The sensitivity of the forcing by IGWs is analysed on the basis of the Eliassen-Palm (EP) flux divergence, which describes the forcing on the circulation by resolved eddies.<br>Model simulations are performed using the upper atmosphere version of the ICON (ICOsahedral Nonhydrostatic) general circulation model, UA-ICON (Borchert et al. 2019, GMD). The simulations start in October and run for an extended austral summer season until March with a horizontal grid spacing of roughly 20 km. The top of the model atmosphere is located at 150 km. Three different model configurations are used with 90, 180, and 360 vertical model layers. The mean vertical grid spacing ranges from roughly 1300 m (90 layers) to 320 m (360 layers) at stratospheric levels, and from roughly 2300 m to 500 m at mesospheric levels. Gravity wave drag parameterizations (orographic and non-orographic) are turned off. The resolved forcing on the mean state due to the EP flux divergence is decomposed into contributions of different scales with respect to horizontal wave numbers. For contributions of IGWs wave numbers above 20 are considered.</p><p>The stratospheric and mesospheric easterlies appear stronger in the lower resolution from October to the end of the austral summer season. Westerlies occur above the mesopause. This strong vertical gradient in the zonal mean zonal wind amplifies in the lower resolution. At the beginning of the simulation period, differences between the mean states are weak, of the order of 5 ms<sup>−1</sup> , and strengthen during the summer season. The forcing due to internal GWs appears stronger in the lower resolution at higher altitudes and amplifies in the region of the strong vertical gradient of the zonal mean zonal wind. Furthermore, wave spectra are discussed. In accordance with previous studies, an increased vertical resolution results in a reduction of the IGW forcing close to strong zonal mean zonal wind gradients in the upper mesosphere/lower thermosphere.</p>


Sign in / Sign up

Export Citation Format

Share Document