scholarly journals Evaluating Weather Research and Forecasting (WRF) Model Predictions of Turbulent Flow Parameters in a Dry Convective Boundary Layer

2011 ◽  
Vol 50 (12) ◽  
pp. 2429-2444 ◽  
Author(s):  
Jeremy A. Gibbs ◽  
Evgeni Fedorovich ◽  
Alexander M. J. van Eijk

AbstractWeather Research and Forecasting (WRF) model predictions using different boundary layer schemes and horizontal grid spacings were compared with observational and numerical large-eddy simulation data for conditions corresponding to a dry atmospheric convective boundary layer (CBL) over the southern Great Plains (SGP). The first studied case exhibited a dryline passage during the simulation window, and the second studied case was used to examine the CBL in a post-cold-frontal environment. The model runs were conducted with three boundary layer parameterization schemes (Yonsei University, Mellor–Yamada–Janjić, and asymmetrical convective) commonly employed within the WRF model environment to represent effects of small-scale turbulent transport. A study domain was centered over the Atmospheric Radiation Measurement Program SGP site in Lamont, Oklahoma. Results show that near-surface flow and turbulence parameters are predicted reasonably well with all tested horizontal grid spacings (1, 2, and 4 km) and that value added through refining grid spacing was minimal at best for conditions considered in this study. In accord with this result, it was suggested that the 16-fold increase in computing overhead associated with changing from 4- to 1-km grid spacing was not justified. Therefore, only differences among schemes at 4-km spacing were presented in detail. WRF model predictions generally overestimated the contribution to turbulence generation by mechanical forcing over buoyancy forcing in both studied CBL cases. Nonlocal parameterization schemes were found to match observational data more closely than did the local scheme, although differences among the predictions with all three schemes were relatively small.

2014 ◽  
Vol 53 (2) ◽  
pp. 377-394 ◽  
Author(s):  
Jeremy A. Gibbs ◽  
Evgeni Fedorovich

AbstractAs computing capabilities expand, operational and research environments are moving toward the use of finescale atmospheric numerical models. These models are attractive for users who seek an accurate description of small-scale turbulent motions. One such numerical tool is the Weather Research and Forecasting (WRF) model, which has been extensively used in synoptic-scale and mesoscale studies. As finer-resolution simulations become more desirable, it remains a question whether the model features originally designed for the simulation of larger-scale atmospheric flows will translate to adequate reproductions of small-scale motions. In this study, turbulent flow in the dry atmospheric convective boundary layer (CBL) is simulated using a conventional large-eddy-simulation (LES) code and the WRF model applied in an LES mode. The two simulation configurations use almost identical numerical grids and are initialized with the same idealized vertical profiles of wind velocity, temperature, and moisture. The respective CBL forcings are set equal and held constant. The effects of the CBL wind shear and of the varying grid spacings are investigated. Horizontal slices of velocity fields are analyzed to enable a comparison of CBL flow patterns obtained with each simulation method. Two-dimensional velocity spectra are used to characterize the planar turbulence structure. One-dimensional velocity spectra are also calculated. Results show that the WRF model tends to attribute slightly more energy to larger-scale flow structures as compared with the CBL structures reproduced by the conventional LES. Consequently, the WRF model reproduces relatively less spatial variability of the velocity fields. Spectra from the WRF model also feature narrower inertial spectral subranges and indicate enhanced damping of turbulence on small scales.


2016 ◽  
Vol 144 (3) ◽  
pp. 1161-1177 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Jimy Dudhia

Abstract Planetary boundary layer (PBL) parameterizations in mesoscale models have been developed for horizontal resolutions that cannot resolve any turbulence in the PBL, and evaluation of these parameterizations has been focused on profiles of mean and parameterized flux. Meanwhile, the recent increase in computing power has been allowing numerical weather prediction (NWP) at horizontal grid spacings finer than 1 km, at which kilometer-scale large eddies in the convective PBL are partly resolvable. This study evaluates the performance of convective PBL parameterizations in the Weather Research and Forecasting (WRF) Model at subkilometer grid spacings. The evaluation focuses on resolved turbulence statistics, considering expectations for improvement in the resolved fields by using the fine meshes. The parameterizations include four nonlocal schemes—Yonsei University (YSU), asymmetric convective model 2 (ACM2), eddy diffusivity mass flux (EDMF), and total energy mass flux (TEMF)—and one local scheme, the Mellor–Yamada–Nakanishi–Niino (MYNN) level-2.5 model. Key findings are as follows: 1) None of the PBL schemes is scale-aware. Instead, each has its own best performing resolution in parameterizing subgrid-scale (SGS) vertical transport and resolving eddies, and the resolution appears to be different between heat and momentum. 2) All the selected schemes reproduce total vertical heat transport well, as resolved transport compensates differences of the parameterized SGS transport from the reference SGS transport. This interaction between the resolved and SGS parts is not found in momentum. 3) Those schemes that more accurately reproduce one feature (e.g., thermodynamic transport, momentum transport, energy spectrum, or probability density function of resolved vertical velocity) do not necessarily perform well for other aspects.


2013 ◽  
Vol 141 (1) ◽  
pp. 30-54 ◽  
Author(s):  
Margaret A. LeMone ◽  
Mukul Tewari ◽  
Fei Chen ◽  
Jimy Dudhia

Abstract High-resolution 24-h runs of the Advanced Research version of the Weather Research and Forecasting Model are used to test eight objective methods for estimating convective boundary layer (CBL) depth h, using four planetary boundary layer schemes: Yonsei University (YSU), Mellor–Yamada–Janjic (MYJ), Bougeault–LaCarrere (BouLac), and quasi-normal scale elimination (QNSE). The methods use thresholds of virtual potential temperature Θυ, turbulence kinetic energy (TKE), Θυ,z, or Richardson number. Those that identify h consistent with values found subjectively from modeled Θυ profiles are used for comparisons to fair-weather observations from the 1997 Cooperative Atmosphere–Surface Exchange Study (CASES-97). The best method defines h as the lowest level at which Θυ,z = 2 K km−1, working for all four schemes, with little sensitivity to horizontal grid spacing. For BouLac, MYJ, and QNSE, TKE thresholds did poorly for runs with 1- and 3-km grid spacing, producing irregular h growth not consistent with Θυ-profile evolution. This resulted from the vertical velocity W associated with resolved CBL eddies: for W > 0, TKE profiles were deeper and Θυ profiles more unstable than for W < 0. For the 1-km runs, 25-point spatial averaging was needed for reliable TKE-based h estimates, but thresholds greater than free-atmosphere values were sensitive to horizontal grid spacing. Matching Θυ(h) to Θυ(0.05h) or Θυ at the first model level were often successful, but the absence of eddies for 9-km grids led to more unstable Θυ profiles and often deeper h. Values of h for BouLac, MYJ, and QNSE, are mostly smaller than observed, with YSU values close to slightly high, consistent with earlier results.


2009 ◽  
Vol 137 (2) ◽  
pp. 745-765 ◽  
Author(s):  
Kevin A. Hill ◽  
Gary M. Lackmann

Abstract The Weather Research and Forecasting Advanced Research Model (WRF-ARW) was used to perform idealized tropical cyclone (TC) simulations, with domains of 36-, 12-, and 4-km horizontal grid spacing. Tests were conducted to determine the sensitivity of TC intensity to the available surface layer (SL) and planetary boundary layer (PBL) parameterizations, including the Yonsei University (YSU) and Mellor–Yamada–Janjic (MYJ) schemes, and to horizontal grid spacing. Simulations were run until a quasi-steady TC intensity was attained. Differences in minimum central pressure (Pmin) of up to 35 hPa and maximum 10-m wind (V10max) differences of up to 30 m s−1 were present between a convection-resolving nested domain with 4-km grid spacing and a parent domain with cumulus parameterization and 36-km grid spacing. Simulations using 4-km grid spacing are the most intense, with the maximum intensity falling close to empirical estimates of maximum TC intensity. Sensitivity to SL and PBL parameterization also exists, most notably in simulations with 4-km grid spacing, where the maximum intensity varied by up to ∼10 m s−1 (V10max) or ∼13 hPa (Pmin). Values of surface latent heat flux (LHFLX) are larger in MYJ than in YSU at the same wind speeds, and the differences increase with wind speed, approaching 1000 W m−2 at wind speeds in excess of 55 m s−1. This difference was traced to a larger exchange coefficient for moisture, CQ, in the MYJ scheme. The exchange coefficients for sensible heat (Cθ) and momentum (CD) varied by <7% between the SL schemes at the same wind speeds. The ratio Cθ/CD varied by <5% between the schemes, whereas CQ/CD was up to 100% larger in MYJ, and the latter is theorized to contribute to the differences in simulated maximum intensity. Differences in PBL scheme mixing also likely played a role in the model sensitivity. Observations of the exchange coefficients, published elsewhere and limited to wind speeds <30 m s−1, suggest that CQ is too large in the MYJ SL scheme, whereas YSU incorporates values more consistent with observations. The exchange coefficient for momentum increases linearly with wind speed in both schemes, whereas observations suggest that the value of CD becomes quasi-steady beyond some critical wind speed (∼30 m s−1).


2011 ◽  
Vol 139 (6) ◽  
pp. 1762-1784 ◽  
Author(s):  
Sundararaman G. Gopalakrishnan ◽  
Frank Marks ◽  
Xuejin Zhang ◽  
Jian-Wen Bao ◽  
Kao-San Yeh ◽  
...  

Abstract Forecasting intensity changes in tropical cyclones (TCs) is a complex and challenging multiscale problem. While cloud-resolving numerical models using a horizontal grid resolution of 1–3 km are starting to show some skill in predicting the intensity changes in individual cases, it is not clear at this time what may be a reasonable horizontal resolution for forecasting TC intensity changes on a day-to-day-basis. The Experimental Hurricane Weather Research and Forecasting System (HWRFX) was used within an idealized framework to gain a fundamental understanding of the influence of horizontal grid resolution on the dynamics of TC vortex intensification in three dimensions. HWFRX is a version of the National Centers for Environmental Prediction (NCEP) Hurricane Weather Research and Forecasting (HWRF) model specifically adopted and developed jointly at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) and Earth System Research Laboratory (ESRL) for studying the intensity change problem at a model grid resolution of about 3 km. Based on a series of numerical experiments at the current operating resolution of about 9 km and at a finer resolution of about 3 km, it was found that improved resolution had very little impact on the initial spinup of the vortex. An initial axisymmetric vortex with a maximum wind speed of 20 m s−1 rapidly intensified to 50 m s−1 within about 24 h in either case. During the spinup process, buoyancy appears to have had a pivotal influence on the formation of the warm core and the subsequent rapid intensification of the modeled vortex. The high-resolution simulation at 3 km produced updrafts as large as 48 m s−1. However, these extreme events were rare, and this study indicated that these events may not contribute significantly to rapid deepening. Additionally, although the structure of the buoyant plumes may differ at 9- and 3-km resolution, interestingly, the axisymmetric structure of the simulated TCs exhibited major similarities. Specifically, the similarities included a deep inflow layer extending up to about 2 km in height with a tangentially averaged maximum inflow velocity of about 12–15 m s−1, vertical updrafts with an average velocity of about 2 m s−1, and a very strong outflow produced at both resolutions for a mature storm. It was also found in either case that the spinup of the primary circulation occurred not only due to the weak inflow above the boundary layer but also due to the convergence of vorticity within the boundary layer. Nevertheless, the mature phase of the storm’s evolution exhibited significantly different patterns of behavior at 9 and 3 km. While the minimum pressure at the end of 96 h was 934 hPa for the 9-km simulation, it was about 910 hPa for the 3-km run. The maximum tangential wind at that time showed a difference of about 10 m s−1. Several sensitivity experiments related to the initial vortex intensity, initial radius of the maximum wind, and physics were performed. Based on ensembles of simulations, it appears that radial advection of the tangential wind and, consequently, radial flux of vorticity become important forcing terms in the momentum budget of the mature storm. Stronger convergence in the boundary layer leads to a larger transport of moisture fluxes and, subsequently, a stronger storm at higher resolution.


2014 ◽  
Vol 71 (7) ◽  
pp. 2545-2563 ◽  
Author(s):  
Bowen Zhou ◽  
Jason S. Simon ◽  
Fotini K. Chow

Abstract Numerical simulations of a convective boundary layer (CBL) are performed to investigate model behavior in the terra incognita, also known as the gray zone. The terra incognita of the CBL refers to a range of model grid spacing that is comparable to the size of the most energetic convective eddies, which are on the order of the boundary layer depth. Using the Rayleigh–Bénard thermal instability as reference, a set of idealized simulations is used to show that gray zone modeling is not only a numerical challenge, but also poses dynamical difficulties. When the grid spacing falls within the CBL gray zone, grid-dependent convection can occur. The size of the initial instability structures is set by the grid spacing rather than the natural state of the flow. This changes higher-order flow statistics and poses fundamental difficulties for gray zone modeling applications.


2013 ◽  
Vol 22 (6) ◽  
pp. 739 ◽  
Author(s):  
Hamish Clarke ◽  
Jason P. Evans ◽  
Andrew J. Pitman

The fire weather of south-east Australia from 1985 to 2009 has been simulated using the Weather Research and Forecasting (WRF) model. The US National Oceanic and Atmospheric Administration Centers for Environmental Prediction and National Center for Atmospheric Research reanalysis supplied the lateral boundary conditions and initial conditions. The model simulated climate and the reanalysis were evaluated against station-based observations of the McArthur Forest Fire Danger Index (FFDI) using probability density function skill scores, annual cumulative FFDI and days per year with FFDI above 50. WRF simulated the main features of the FFDI distribution and its spatial variation, with an overall positive bias. Errors in average FFDI were caused mostly by errors in the ability of WRF to simulate relative humidity. In contrast, errors in extreme FFDI values were driven mainly by WRF errors in wind speed simulation. However, in both cases the quality of the observed data is difficult to ascertain. WRF run with 50-km grid spacing did not consistently improve upon the reanalysis statistics. Decreasing the grid spacing to 10km led to fire weather that was generally closer to observations than the reanalysis across the full range of evaluation metrics used here. This suggests it is a very useful tool for modelling fire weather over the entire landscape of south-east Australia.


2008 ◽  
Vol 136 (6) ◽  
pp. 1971-1989 ◽  
Author(s):  
Keith M. Hines ◽  
David H. Bromwich

Abstract A polar-optimized version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was developed to fill climate and synoptic needs of the polar science community and to achieve an improved regional performance. To continue the goal of enhanced polar mesoscale modeling, polar optimization should now be applied toward the state-of-the-art Weather Research and Forecasting (WRF) Model. Evaluations and optimizations are especially needed for the boundary layer parameterization, cloud physics, snow surface physics, and sea ice treatment. Testing and development work for Polar WRF begins with simulations for ice sheet surface conditions using a Greenland-area domain with 24-km resolution. The winter month December 2002 and the summer month June 2001 are simulated with WRF, version 2.1.1, in a series of 48-h integrations initialized daily at 0000 UTC. The results motivated several improvements to Polar WRF, especially to the Noah land surface model (LSM) and the snowpack treatment. Different physics packages for WRF are evaluated with December 2002 simulations that show variable forecast skill when verified with the automatic weather station observations. The WRF simulation with the combination of the modified Noah LSM, the Mellor–Yamada–Janjić boundary layer parameterization, and the WRF single-moment microphysics produced results that reach or exceed the success standards of a Polar MM5 simulation for December 2002. For summer simulations of June 2001, WRF simulates an improved surface energy balance, and shows forecast skill nearly equal to that of Polar MM5.


Sign in / Sign up

Export Citation Format

Share Document