scholarly journals Scales, Growth Rates, and Spectral Fluxes of Baroclinic Instability in the Ocean

2011 ◽  
Vol 41 (6) ◽  
pp. 1057-1076 ◽  
Author(s):  
Ross Tulloch ◽  
John Marshall ◽  
Chris Hill ◽  
K. Shafer Smith

Abstract An observational, modeling, and theoretical study of the scales, growth rates, and spectral fluxes of baroclinic instability in the ocean is presented, permitting a discussion of the relation between the local instability scale; the first baroclinic deformation scale Rdef; and the equilibrated, observed eddy scale. The geography of the large-scale, meridional quasigeostrophic potential vorticity (QGPV) gradient is mapped out using a climatological atlas, and attention is drawn to asymmetries between midlatitude eastward currents and subtropical return flows, the latter of which has westward and eastward zonal velocity shears. A linear stability analysis of the climatology, under the “local approximation,” yields the growth rates and scales of the fastest-growing modes. Fastest-growing modes on eastward-flowing currents, such as the Kuroshio and the Antarctic Circumpolar Current, have a scale somewhat larger (by a factor of about 2) than Rdef. They are rapidly growing (e folding in 1–3 weeks) and deep reaching, and they can be characterized by an interaction between interior QGPV gradients, with a zero crossing in the QGPV gradient at depth. In contrast, fastest-growing modes in the subtropical return flows (as well as much of the gyre interiors) have a scale smaller than Rdef (by a factor of between 0.5 and 1), grow more slowly (e-folding scale of several weeks), and owe their existence to the interaction of a positive surface QGPV gradient and a negative gradient beneath. These predictions of linear theory under the local approximation are then compared to observed eddy length scales and spectral fluxes using altimetric data. It is found that the scale of observed eddies is some 2–3 times larger than the instability scale, indicative of a modest growth in horizontal scale. No evidence of an inverse cascade over decades in scale is found. Outside of a tropical band, the eddy scale varies with latitude along with but somewhat less strongly than Rdef. Finally, exactly the same series of calculations is carried out on fields from an idealized global eddying model, enabling study in a more controlled setting. Broadly similar conclusions are reached, thus reinforcing inferences made from the data.

Author(s):  
F. Sévellec ◽  
A. C. Naveira Garabato ◽  
T. Huck

AbstractThe impact of mesoscale eddy turbulence on long-term, climatic variability in the ocean's buoyancy structure is investigated using observations from a mooring deployed in the Drake Passage, Southern Ocean. By applying the Temporal-Residual-Mean framework and characterizing the variance contributors and the buoyancy variance budget, we identify the main source and sink of long-term buoyancy variance. Long-term buoyancy variance amplitude is set by long-term vertical velocity fluctuations acting on the steady stratification. This baro-clinic buoyancy flux is also the main source of the variance, indicative of the effect of large-scale baroclinic instability. This source is balanced by a sink of long-term buoyancy variance associated with the vertical advection of the steady stratification by the eddy-induced circulation. We conclude that mesoscale eddy turbulence acts as a damping mechanism for long-term, climatic variability in the region of the observations, consistent with an `eddy saturated' behaviour of the Antarctic Circumpolar Current.


2019 ◽  
Vol 49 (12) ◽  
pp. 3221-3244 ◽  
Author(s):  
Ryan D. Patmore ◽  
Paul R. Holland ◽  
David R. Munday ◽  
Alberto C. Naveira Garabato ◽  
David P. Stevens ◽  
...  

AbstractIn the Southern Ocean the Antarctic Circumpolar Current is significantly steered by large topographic features, and subpolar gyres form in their lee. The geometry of topographic features in the Southern Ocean is highly variable, but the influence of this variation on the large-scale flow is poorly understood. Using idealized barotropic simulations of a zonal channel with a meridional ridge, it is found that the ridge geometry is important for determining the net zonal volume transport. A relationship is observed between ridge width and volume transport that is determined by the form stress generated by the ridge. Gyre formation is also highly reliant on the ridge geometry. A steep ridge allows gyres to form within regions of unblocked geostrophic (f/H) contours, with an increase in gyre strength as the ridge width is reduced. These relationships among ridge width, gyre strength, and net zonal volume transport emerge to simultaneously satisfy the conservation of momentum and vorticity.


2016 ◽  
Vol 46 (7) ◽  
pp. 2103-2122 ◽  
Author(s):  
D. Randolph Watts ◽  
Karen L. Tracey ◽  
Kathleen A. Donohue ◽  
Teresa K. Chereskin

AbstractThe 4-yr measurements by current- and pressure-recording inverted echo sounders in Drake Passage produced statistically stable eddy heat flux estimates. Horizontal currents in the Antarctic Circumpolar Current (ACC) turn with depth when a depth-independent geostrophic current crosses the upper baroclinic zone. The dynamically important divergent component of eddy heat flux is calculated. Whereas full eddy heat fluxes differ greatly in magnitude and direction at neighboring locations within the local dynamics array (LDA), the divergent eddy heat fluxes are poleward almost everywhere. Case studies illustrate baroclinic instability events that cause meanders to grow rapidly. In the southern passage, where eddy variability is weak, heat fluxes are weak and not statistically significant. Vertical profiles of heat flux are surface intensified with ~50% above 1000 m and uniformly distributed with depth below. Summing poleward transient eddy heat transport across the LDA of −0.010 ± 0.005 PW with the stationary meander contribution of −0.004 ± 0.001 PW yields −0.013 ± 0.005 PW. A comparison metric, −0.4 PW, represents the total oceanic heat loss to the atmosphere south of 60°S. Summed along the circumpolar ACC path, if the LDA heat flux occurred at six “hot spots” spanning similar or longer path segments, this could account for 20%–70% of the metric, that is, up to −0.28 PW. The balance of ocean poleward heat transport along the remaining ACC path should come from weak eddy heat fluxes plus mean cross-front temperature transports. Alternatively, the metric −0.4 PW, having large uncertainty, may be high.


Ocean Science ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1207-1223
Author(s):  
Julien Jouanno ◽  
Xavier Capet

Abstract. The dynamical balance of the Antarctic Circumpolar Current and its implications on the functioning of the world ocean are not fully understood and poorly represented in global circulation models. In this study, the sensitivities of an idealized Southern Ocean (SO) storm track are explored with a set of eddy-rich numerical simulations. The classical partition between barotropic and baroclinic modes is sensitive to current–topography interactions in the mesoscale range 10–100 km, as comparisons between simulations with rough or smooth bathymetry reveal. Configurations with a rough bottom have weak barotropic motions, ubiquitous bottom form stress/pressure torque, no wind-driven gyre in the lee of topographic ridges, less efficient baroclinic turbulence and, thus, larger circumpolar transport rates. The difference in circumpolar transport produced by topographic roughness depends on the strength with which (external) thermohaline forcings by the rest of the world ocean constrain the stratification at the northern edge of the SO. The study highlights the need for a more comprehensive treatment of the Antarctic Circumpolar Current (ACC) interactions with the ocean floor, including realistic fields of bottom form stress and pressure torque. It also sheds some light on the behavior of idealized storm tracks recently modeled: (i) the saturation mechanism, whereby the circumpolar transport does not depend on wind intensity, is a robust and generic attribute of ACC-like circumpolar flows; (ii) the adjustment toward saturation can take place over widely different timescales (from months to years) depending on the possibility (or not) for barotropic Rossby waves to propagate signals of wind change and accelerate/decelerate SO wind-driven gyres. The real SO having both gyres and ACC saturation timescales typical of our “no gyre” simulations may be in an intermediate regime in which mesoscale topography away from major ridges provides partial and localized support for bottom form stress/pressure torque.


2011 ◽  
Vol 18 (3) ◽  
pp. 361-365 ◽  
Author(s):  
O. G. Derzho ◽  
B. de Young

Abstract. In this paper we present a simple analytical model for low frequency and large scale variability of the Antarctic Circumpolar Current (ACC). The physical mechanism of the variability is related to temporal and spatial variations of the cyclonic mean flow (ACC) due to circularly propagating nonlinear barotropic Rossby wave trains. It is shown that the Rossby wave train is a fundamental mode, trapped between the major fronts in the ACC. The Rossby waves are predicted to rotate with a particular angular velocity that depends on the magnitude and width of the mean current. The spatial structure of the rotating pattern, including its zonal wave number, is defined by the specific form of the stream function-vorticity relation. The similarity between the simulated patterns and the Antarctic Circumpolar Wave (ACW) is highlighted. The model can predict the observed sequence of warm and cold patches in the ACW as well as its zonal number.


2017 ◽  
Vol 47 (6) ◽  
pp. 1291-1305 ◽  
Author(s):  
Madeleine K. Youngs ◽  
Andrew F. Thompson ◽  
Ayah Lazar ◽  
Kelvin J. Richards

AbstractAlong-stream variations in the dynamics of the Antarctic Circumpolar Current (ACC) impact heat and tracer transport, regulate interbasin exchange, and influence closure of the overturning circulation. Topography is primarily responsible for generating deviations from zonal-mean properties, mainly through standing meanders associated with regions of high eddy kinetic energy. Here, an idealized channel model is used to explore the spatial distribution of energy exchange and its relationship to eddy geometry, as characterized by both eddy momentum and eddy buoyancy fluxes. Variations in energy exchange properties occur not only between standing meander and quasi-zonal jet regions, but throughout the meander itself. Both barotropic and baroclinic stability properties, as well as the magnitude of energy exchange terms, undergo abrupt changes along the path of the ACC. These transitions are captured by diagnosing eddy fluxes of energy and by adopting the eddy geometry framework. The latter, typically applied to barotropic stability properties, is applied here in the depth–along-stream plane to include information about both barotropic and baroclinic stability properties of the flow. These simulations reveal that eddy momentum fluxes, and thus barotropic instability, play a leading role in the energy budget within a standing meander. This result suggests that baroclinic instability alone cannot capture the dynamics of ACC standing meanders, a challenge for models where eddy fluxes are parameterized.


Sign in / Sign up

Export Citation Format

Share Document