scholarly journals A Synoptic-Scale Cold-Reservoir Hypothesis on the Origin of the Mature-Stage Super Cloud Cluster: A Case Study with a Global Nonhydrostatic Model

2016 ◽  
Vol 56 ◽  
pp. 14.1-14.24 ◽  
Author(s):  
Kazuyoshi Oouchi ◽  
Masaki Satoh

Abstract This chapter proposes a working assumption as a way of conceptual simplification of the origin of Madden–Julian oscillation (MJO)-associated convection, or super cloud cluster (SCC). To develop the simplification, the importance of the synoptic-scale cold reservoir underlying the convection and its interaction with the accompanying zonal–vertical circulation is highlighted. The position of the convection with respect to that of climatological warm pool is postulated to determine the effectiveness of this framework. The authors introduce a prototype hypothesis to illustrate the usefulness of the above assumption based on a numerical simulation experiment with a global nonhydrostatic model for the boreal summer season. Premises for the hypothesis include 1) that the cloud cluster (CC) is a basic building block of tropical convection accompanying the precipitation-generated cold reservoir in its subcloud layer and 2) that a warm-pool-induced quasi-persistent zonal circulation is key for the upscale organization of CCs. The theory of squall-line structure by Rotunno, Klemp, and Weisman (hereafter RKW) is employed for the interpretation. No account is taken regarding the influences of equatorial waves as a first-order approximation. Given the premises, an SCC of O(1000) km scale is interpretable as a gigantic analog of a multicellular squall line embedded in the quasi-stationary westerly shear branch of the zonal circulation east of the warm water pool. A CC corresponds to the “cell,” and its successive formation to the east and westward movement represents an upshear-tilting core of intense updraft. The upshear-tilted SCC is favorably maintained with the precipitating area being separated from the gust front boundary between the cold reservoir and a low-level easterly, which is supported in the realm of the RKW theory where two horizontal vortices associated with the cold reservoir and vertical shear are opposite in sign but cold reservoir’s vorticity can be inferred to be larger, leading to upshear-tilted and multicellular behavior. As a counterexample, CCs to the west of the warm pool (Indian Ocean and Arabian Sea) are embedded in the easterly shear and organized into a less coherent cloud cluster complex (CCC) given the situation of RKW where two horizontal vortices associated with the cold reservoir and vertical shear are still opposite in sign, but the smaller vertical shear west of the warm pool causes even more suboptimal vorticity imbalance in the western flank of cold reservoir, leading to larger tilt with height and intermittent, less viable storm situations. A cold pool or cold reservoir, having been prevalent in mesoscale convection research, is argued to be important for the MJO as pointed out by the emerging evidence in the international field campaign for the MJO called Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/DYNAMO. The simplified and idealistic hypothesis proposed here does not cover all aspects of MJO and its validation awaits further modeling and observational studies, but it can offer a framework for characterizing a fundamental aspect of the origin of MJO-associated convection.

2007 ◽  
Vol 20 (10) ◽  
pp. 2133-2146 ◽  
Author(s):  
S-K. Lee ◽  
D. B. Enfield ◽  
C. Wang

Abstract The annual heat budget of the Western Hemisphere warm pool (WHWP) is explored using the output of an ocean general circulation model (OGCM) simulation. According to the analysis, the WHWP cannot be considered as a monolithic whole with a single set of dominating processes that explain its behavior. The three regions considered, namely the eastern north Pacific (ENP), the Gulf of Mexico (GoM), and the Caribbean Sea (CBN), are each unique in terms of the atmospheric and oceanic processes that dominate the corresponding heat budgets. In the ENP region, clear-sky shortwave radiation flux is responsible for the growth of the warm pool in boreal spring, while increased cloud cover in boreal summer and associated reduction in solar radiation play a crucial role for the ENP warm pool’s demise. Ocean upwelling in the Costa Rica Dome connected to surrounding areas by horizontal advection offers a persistent yearlong cooling mechanism. Over the Atlantic, the clear-sky radiation flux that increases monotonically from December to May and decreases later is largely responsible for the onset and decay of the Atlantic-side warm pool in boreal summer and fall. The CBN region is affected by upwelling and horizontal advective cooling within and away from the coastal upwelling zone off northern South America during the onset and peak phases, thus slowing down the warm pool’s development, but no evidence was found that advective heat flux divergence is important in the GoM region. Turbulent mixing is also an important cooling mechanism in the annual cycle of the WHWP, and the vertical shear at the warm pool base helps to sustain the turbulent mixing. Common to all three WHWP regions is the reduction of wind speed at the peak phase, suggestive of a convection–evaporation feedback known to be important in the Indo-Pacific warm pool dynamics.


2010 ◽  
Vol 67 (5) ◽  
pp. 1456-1473 ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kunio Yoneyama ◽  
Masaki Katsumata ◽  
Ryuichi Shirooka

Abstract The multiscale structure of a super cloud cluster (SCC) over the equatorial Indian Ocean, observed in November and December 2006, was investigated using data from satellite microwave sensors and surface-based radars. The smaller-scale structure of this SCC was marked by a complicated relationship between rainfall systems and upper-tropospheric cloud shields, which moved eastward and westward, respectively, with a cycle of 2–4 days. In the analyses, attention was given to the structure of slow eastward-propagating (5–11 m s−1) precipitating systems and related synoptic-scale (∼2000 km) disturbances. A case study of one of the systems revealed that it consisted of several lines of convective cells with a depth that was usually shallower than 10 km unless the cells encountered the westward-moving cloud shields. The environment of the convective lines was characterized by persistent unstable conditions with an increase of the westerly flow in the lower troposphere, suggesting the existence of a synoptic-scale upward motion. Composite analyses revealed that each rainfall system formed in a region of zonal flow convergence near the surface and divergence near 300 hPa. The vertical temperature structure tilted westward with height below this pressure level and eastward aloft, similar to that of a convectively coupled Kelvin wave. These results suggest that a SCC involves a group of synoptic-scale shallow waves propagating eastward. An additional analysis over the western Pacific also showed the predominance of eastward propagation in a SCC, demonstrating the advantage of satellite microwave sensors over infrared ones in monitoring the multiscale structure of tropical convection.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 114
Author(s):  
Young-Min Yang ◽  
Taehyoun Shim ◽  
Ja-Yeon Moon ◽  
Ki-Young Kim ◽  
Yu-Kyung Hyun

A Madden–Jillian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO) are important climate variabilities, which affect a forecast of weather and climate. In this study, the MJO and the BSISO hindcasts from the Global Seasonal Forecast System, version 5 (GS5) were diagnosed using dynamic-oriented theories. We additionally analyzed the GS5 climatological run to identify whether the weakness of the GS5 hindcast results from the model physics or initialization processes. The GS5 hindcast captures three-dimensional dynamics and thermodynamics structure of MJO eastward propagation well in the Indian Ocean. The model produces the boundary layer (BL) moisture convergence anomalies to the east of the MJO deep precipitation with easterly anomalies associated with the Kelvin wave. The enhanced BL moisture convergence increases upward transport of moisture from the surface to the lower troposphere, inducing the moist lower troposphere and the positive convective instability by destabilization of the lower atmosphere and, thus, generating the next convection to the east of MJO deep convection and promoting MJO eastward propagation. However, the signal for eastward propagation is relatively weak in the Maritime Continent (MC) and the Western Pacific (WP). To improve the MJO eastward propagation in the MC and WP, improved heating induced by shallow (or congestus) clouds interacting with enhanced BL dynamics may be required. On the other hand, the GS5 hindcast reproduces the BSISO northward propagation reasonably well in the Indian Ocean, which is attributed to positive vorticity anomalies induced by strong vertical shear.


2011 ◽  
Vol 24 (12) ◽  
pp. 2963-2982 ◽  
Author(s):  
Andrea Alessandri ◽  
Andrea Borrelli ◽  
Silvio Gualdi ◽  
Enrico Scoccimarro ◽  
Simona Masina

Abstract This study investigates the predictability of tropical cyclone (TC) seasonal count anomalies using the Centro Euro-Mediterraneo per i Cambiamenti Climatici–Istituto Nazionale di Geofisica e Vulcanologia (CMCC-INGV) Seasonal Prediction System (SPS). To this aim, nine-member ensemble forecasts for the period 1992–2001 for two starting dates per year were performed. The skill in reproducing the observed TC counts has been evaluated after the application of a TC location and tracking detection method to the retrospective forecasts. The SPS displays good skill in predicting the observed TC count anomalies, particularly over the tropical Pacific and Atlantic Oceans. The simulated TC activity exhibits realistic geographical distribution and interannual variability, thus indicating that the model is able to reproduce the major basic mechanisms that link the TCs’ occurrence with the large-scale circulation. TC count anomalies prediction has been found to be sensitive to the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations performed without assimilated initial conditions, the results indicate that the assimilation significantly improves the prediction of the TC count anomalies over the eastern North Pacific Ocean (ENP) and northern Indian Ocean (NI) during boreal summer. During the austral counterpart, significant progresses over the area surrounding Australia (AUS) and in terms of the probabilistic quality of the predictions also over the southern Indian Ocean (SI) were evidenced. The analysis shows that the improvement in the prediction of anomalous TC counts follows the enhancement in forecasting daily anomalies in sea surface temperature due to subsurface ocean initialization. Furthermore, the skill changes appear to be in part related to forecast differences in convective available potential energy (CAPE) over the ENP and the North Atlantic Ocean (ATL), in wind shear over the NI, and in both CAPE and wind shear over the SI.


2019 ◽  
Vol 76 (10) ◽  
pp. 3267-3283 ◽  
Author(s):  
Cheng-Ku Yu ◽  
Che-Yu Lin ◽  
Jhang-Shuo Luo

Abstract This study used radar and surface observations to track a long-lasting outer tropical cyclone rainband (TCR) of Typhoon Jangmi (2008) over a considerable period of time (~10 h) from its formative to mature stage. Detailed analyses of these unique observations indicate that the TCR was initiated on the eastern side of the typhoon at a radial distance of ~190 km as it detached from the upwind segment of a stratiform rainband located close to the inner-core boundary. The outer rainband, as it propagated cyclonically outward, underwent a prominent convective transformation from generally stratiform precipitation during the earlier period to highly organized, convective precipitation during its mature stage. The transformation was accompanied by a clear trend of surface kinematics and thermodynamics toward squall-line-like features. The observed intensification of the rainband was not simply related to the spatial variation of the ambient CAPE or potential instability; instead, the dynamical interaction between the prerainband vertical shear and cold pools, with progression toward increasingly optimal conditions over time, provides a reasonable explanation for the temporal alternation of the precipitation intensity. The increasing intensity of cold pools was suggested to play an essential role in the convective transformation for the rainband. The propagation characteristics of the studied TCR were distinctly different from those of wave disturbances frequently documented within the cores of tropical cyclones; however, they were consistent with the theoretically predicted propagation of convectively generated cold pools. The convective transformation, as documented in the present case, is anticipated to be one of the fundamental processes determining the evolving and structural nature of outer TCRs.


2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2018 ◽  
Vol 18 (16) ◽  
pp. 11973-11990 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Irene Stemmler ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50 % between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.


2008 ◽  
Vol 21 (17) ◽  
pp. 4149-4167 ◽  
Author(s):  
Eric D. Maloney ◽  
Dudley B. Chelton ◽  
Steven K. Esbensen

Abstract Boreal summer intraseasonal (30–90-day time scale) sea surface temperature (SST) variability in the east Pacific warm pool is examined using Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) sea surface temperatures during 1998–2005. Intraseasonal SST variance maximizes at two locations in the warm pool: in the vicinity of 9°N, 92°W near the Costa Rica Dome and near the northern edge of the warm pool in the vicinity of 19°N, 108°W. Both locations exhibit a significant spectral peak at 50–60-day periods, time scales characteristic of the Madden–Julian oscillation (MJO). Complex empirical orthogonal function (CEOF) and spectra coherence analyses are used to show that boreal summer intraseasonal SST anomalies are coherent with precipitation anomalies across the east Pacific warm pool. Spatial variations of phase are modest across the warm pool, although evidence exists for the northward progression of intraseasonal SST and precipitation anomalies. Intraseasonal SSTs at the north edge of the warm pool lag those in the vicinity of the Costa Rica Dome by about 1 week. The MJO explains 30%–40% of the variance of intraseasonal SST anomalies in the east Pacific warm pool during boreal summer. Peak-to-peak SST variations of 0.8°–1.0°C occur during MJO events. SST is approximately in quadrature with MJO precipitation, with suppressed (enhanced) MJO precipitation anomalies leading positive (negative) SST anomalies by 7–10 days. Consistent with the CEOF and coherence analyses, MJO-related SST and precipitation anomalies near the Costa Rica Dome lead those at the northern edge of the warm pool by about 1 week.


Sign in / Sign up

Export Citation Format

Share Document