scholarly journals Forest Fire Effects on Air Quality in Ontario: Evaluation of Several Recent Examples

2013 ◽  
Vol 94 (7) ◽  
pp. 1059-1064 ◽  
Author(s):  
Frank Dempsey

Several events were studied to examine the sources of smoke and pollutants that may affect air quality in Ontario as well as the transport mechanisms that result in effects on ground-level air quality. The selected events were strongly suspected of being influenced by forest fire smoke plumes and the evaluation of the events in this study confirmed (to a high degree of confidence) that smoke made a contribution to the measured pollutants. The main satellite-based remote-sensing product that correlated well with wildfire smoke plumes was carbon monoxide column amount.

2017 ◽  
Vol 28 (4) ◽  
pp. 319-327 ◽  
Author(s):  
Alexandra E. Larsen ◽  
Brian J. Reich ◽  
Mark Ruminski ◽  
Ana G. Rappold

2016 ◽  
Vol 2016 (1) ◽  
Author(s):  
Ana Rappold* ◽  
Alexandra Larsen ◽  
Brian Reich

2011 ◽  
Vol 116 (D22) ◽  
pp. n/a-n/a ◽  
Author(s):  
David J. Miller ◽  
Kang Sun ◽  
Mark A. Zondlo ◽  
David Kanter ◽  
Oleg Dubovik ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Gilliane Davison ◽  
Karoline K. Barkjohn ◽  
Gayle S. W. Hagler ◽  
Amara L. Holder ◽  
Sarah Coefield ◽  
...  

Effective strategies to reduce indoor air pollutant concentrations during wildfire smoke events are critically needed. Worldwide, communities in areas prone to wildfires may suffer from annual smoke exposure events lasting from days to weeks. In addition, there are many areas of the world where high pollution events are common and where methods employed to reduce exposure to pollution may have relevance to wildfire smoke pollution episodes and vice versa. This article summarizes a recent virtual meeting held by the United States Environmental Protection Agency (EPA) to share research, experiences, and other information that can inform best practices for creating clean air spaces during wildland fire smoke events. The meeting included presentations on the public health impacts of wildland fire smoke; public health agencies' experiences and resilience efforts; and methods to improve indoor air quality, including the effectiveness of air filtration methods [e.g., building heating ventilation and air conditioning (HVAC) systems and portable, free-standing air filtration systems]. These presentations and related research indicate that filtration has been demonstrated to effectively improve indoor air quality during high ambient air pollution events; however, several research questions remain regarding the longevity and maintenance of filtration equipment during and after smoke events, effects on the pollution mixture, and degree to which adverse health effects are reduced.


2021 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Zewei Wang ◽  
Pengfei Yang ◽  
Haotian Liang ◽  
Change Zheng ◽  
Jiyan Yin ◽  
...  

Forest fire is a ubiquitous disaster which has a long-term impact on the local climate as well as the ecological balance and fire products based on remote sensing satellite data have developed rapidly. However, the early forest fire smoke in remote sensing images is small in area and easily confused by clouds and fog, which makes it difficult to be identified. Too many redundant frequency bands and remote sensing index for remote sensing satellite data will have an interference on wildfire smoke detection, resulting in a decline in detection accuracy and detection efficiency for wildfire smoke. To solve these problems, this study analyzed the sensitivity of remote sensing satellite data and remote sensing index used for wildfire detection. First, a high-resolution remote sensing multispectral image dataset of forest fire smoke, containing different years, seasons, regions and land cover, was established. Then Smoke-Unet, a smoke segmentation network model based on an improved Unet combined with the attention mechanism and residual block, was proposed. Furthermore, in order to reduce data redundancy and improve the recognition accuracy of the algorithm, the conclusion was made by experiments that the RGB, SWIR2 and AOD bands are sensitive to smoke recognition in Landsat-8 images. The experimental results show that the smoke pixel accuracy rate using the proposed Smoke-Unet is 3.1% higher than that of Unet, which could effectively segment the smoke pixels in remote sensing images. This proposed method under the RGB, SWIR2 and AOD bands can help to segment smoke by using high-sensitivity band and remote sensing index and makes an early alarm of forest fire smoke.


Author(s):  
Angel Liduvino Vara-Vela ◽  
Dirceu Luís Herdies ◽  
Débora Souza Alvim ◽  
Éder Paulo Vendrasco ◽  
Silvio Nilo Figueroa ◽  
...  

AbstractAerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute air pollution episodes is therefore required. A new predictive framework for Amazon forest fire smoke dispersion over South America has been developed based on the Weather Research and Forecasting with Chemistry community (WRF-Chem) model. Two experiments of 48-hour simulations over South America were performed by using this system at 20 km horizontal resolution, on a daily basis, during August and September of 2018 and 2019. The experiment in 2019 included the very strong 3-week forest fire event, when the São Paulo Metropolitan Area, located in southeastern South America, was plunged into darkness on August 19. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. The system is executed daily immediately after the CPTEC Satellite Division releases the latest active fire locations data and provides 48-hour forecasts of regional distributions of chemical species such as CO, PM2.5 and O3. The new modeling system will be used as a benchmark within the framework of the Chemistry of the Atmosphere - Field Experiment in Brazil (CAFE-Brazil) project, which will take place in 2022 over the Amazon.


2021 ◽  
Author(s):  
Xinxin Ye ◽  
Pargoal Arab ◽  
Ravan Ahmadov ◽  
Eric James ◽  
Georg A. Grell ◽  
...  

Abstract. Wildfire smoke is one of the most significant concerns of human and environmental health, associated with its substantial impacts on air quality, weather, and climate. However, biomass burning emissions and smoke remain among the largest sources of uncertainties in air quality forecasts. In this study, we evaluate the smoke emissions and plume forecasts from twelve state-of-the-art air quality forecasting systems during the Williams Flats fire in Washington State, the U.S., August 2019, which was intensively observed during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field campaign. Model forecasts with lead times within one day are intercompared under the same framework based on observations from multiple platforms to reveal their performance regarding fire emissions, aerosol optical depth (AOD), surface PM2.5, plume injection, and surface PM2.5 to AOD ratio. The comparison of smoke organic carbon (OC) emissions suggests a large range of daily totals among the models with a factor of 20 to 50. Limited representations of the diurnal patterns and day-to-day variations of emissions highlight the need to incorporate new methodologies to predict the temporal evolution and reduce uncertainty of smoke emission estimates. The evaluation of smoke AOD (sAOD) forecasts suggests overall underpredictions in both the magnitude and smoke plume area for nearly all models, although the high-resolution models have a better representation of the fine-scale structures of smoke plumes. The models driven by FRP-based fire emissions or assimilating satellite AOD data generally outperform the others. Additionally, limitations of the persistence assumption used when predicting smoke emissions are revealed by substantial underpredictions of sAOD on 8 August 2019 mainly over the transported smoke plumes, owing to the underestimated emissions on the 7th. In contrast, the surface smoke PM2.5 (sPM2.5) forecasts show both positive and negative overall biases for these models, with most members presenting more considerable diurnal variations of sPM2.5. Overpredictions of sPM2.5 are found for the models driven by FRP-based emissions during nighttime, suggesting the necessity to improve vertical emission allocation within and above the planetary boundary layer (PBL). Smoke injection heights are further evaluated using the NASA Langley Research Center’s Differential Absorption High Spectral Resolution Lidar (DIAL-HSRL) data collected during the flight observations. As the fire became stronger over 3–8 August, the plume height became deeper with the day-to-day range of about 2–9 km a.g.l. However, narrower ranges are found for all models with a tendency of overpredicting the plume heights for the shallower injection transects and underpredicting for the days showing deeper injections. The misrepresented plume injection heights lead to inaccurate vertical plume allocations along the transects corresponding to transported one-day-old smoke. Discrepancies in model performance for surface PM2.5 and AOD are further suggested by the evaluation of their ratio, which cannot be compensated by solely adjusting the smoke emissions but are more attributable to model representations of plume injections, besides other possible factors including the evolution of PBL depths and aerosol optical property assumptions. By consolidating multiple forecast systems, these results provide strategic insight on pathways to improve smoke forecasts.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1131
Author(s):  
Ricardo Cisneros ◽  
Haiganoush K. Preisler ◽  
Donald Schweizer ◽  
Hamed Gharibi

Wildland fire smoke is visible and detectable with remote sensing technology. Using this technology to assess ground level pollutants and the impacts to human health and exposure is more difficult. We found the presence of satellite derived smoke plumes for more than a couple of hours in the previous three days has significant impact on the chances of ground level ozone values exceeding the norm. While the magnitude of the impact will depend on characteristics of fires such as size, location, time in transport, or ozone precursors produced by the fire, we demonstrate that information on satellite derived smoke plumes together with site specific regression models provide useful information for supporting causal relationship between smoke from fire and ozone exceedances of the norm. Our results indicated that fire seasons increasing the median ozone level by 15 ppb. However, they seem to have little impact on the metric used for regulatory compliance, in particular at urban sites, except possibly during the 2008 forest fires in California.


Sign in / Sign up

Export Citation Format

Share Document