scholarly journals A new predictive framework for Amazon forest fire smoke dispersion over South America

Author(s):  
Angel Liduvino Vara-Vela ◽  
Dirceu Luís Herdies ◽  
Débora Souza Alvim ◽  
Éder Paulo Vendrasco ◽  
Silvio Nilo Figueroa ◽  
...  

AbstractAerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute air pollution episodes is therefore required. A new predictive framework for Amazon forest fire smoke dispersion over South America has been developed based on the Weather Research and Forecasting with Chemistry community (WRF-Chem) model. Two experiments of 48-hour simulations over South America were performed by using this system at 20 km horizontal resolution, on a daily basis, during August and September of 2018 and 2019. The experiment in 2019 included the very strong 3-week forest fire event, when the São Paulo Metropolitan Area, located in southeastern South America, was plunged into darkness on August 19. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. The system is executed daily immediately after the CPTEC Satellite Division releases the latest active fire locations data and provides 48-hour forecasts of regional distributions of chemical species such as CO, PM2.5 and O3. The new modeling system will be used as a benchmark within the framework of the Chemistry of the Atmosphere - Field Experiment in Brazil (CAFE-Brazil) project, which will take place in 2022 over the Amazon.

2020 ◽  
Author(s):  
Angel Vela ◽  
Debora Alvim ◽  
Eder Vendrasco ◽  
Dirceu Herdies ◽  
Nilo Figueroa ◽  
...  

<p>Biomass burning episodes are quite common in the central region of South America and represent the dominant aerosol sources during the dry/burning, between August and October. Large amounts of trace gases and aerosols injected into the atmosphere from these fire events can then be efficiently transported to urban areas in southeastern South America, thus affecting air quality over those areas. Observational data have been of fundamental importance to understand the evolution and interaction of biomass burning products with meteorology and chemistry. However, supplementing this information with the use of a comprehensive air quality modeling system in order to anticipate very acute air pollution episodes, and thus avoiding severe impacts on human health, is also required. Considering this, a new regional air pollution modeling framework for South America is being implemented by the Center for Weather Forecasting and Climate Studies (CPTEC), the National Weather Service of Brazil. This new system, based on the Weather Research and Forecasting with Chemistry model (WRF-Chem; Grell et al., 2005), is being run experimentally and its operational implementation is underway. The forecasts were driven by global forecast data from the GFS-FV3 model for meteorology and from the WACCM model for chemistry, both data sets provided every 6 hours. WACCM forecasts are employed to map gas and aerosol background concentrations to the WRF-Chem initial and boundary conditions, according to the MOZCART chemical mechanism. Two experiments of 48-hour real-time forecast simulations were performed, on a daily basis, during August and September of 2018 and 2019. The experiment for 2019 includes the very strong 3-week forest fire event when the Metropolitan Area of São Paulo, the largest metropolitan area in South America, plunged into darkness on August 19, with day turning into night. Model results are in good domain-wide agreement with satellite data and also with in situ measurements. Besides forecasts of meteorological parameters, this new system provides forecasts of regional distributions of primary chemical species (CO, SO2, NOx, particulate matter including black carbon), of secondary species (ozone, secondary organic aerosols) and air pollution related health indices, all parameters with a resolution of 20 km and for the next 72 hours.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 276 ◽  
Author(s):  
Boggarapu Praphulla Chandra ◽  
Crystal D. McClure ◽  
JoAnne Mulligan ◽  
Daniel A. Jaffe

Forest fire smoke influence in urban areas is relatively easy to detect at high concentrations but more challenging to detect at low concentrations. In this study, we present a simplified method that can reliably quantify smoke tracers in an urban environment at relatively low cost and complexity. For this purpose, we used dual-bed thermal desorption tubes with an auto-sampler to collect continuous samples of volatile organic compounds (VOCs). We present the validation and evaluation of this approach using thermal desorption gas chromatography mass spectrometry (TD-GC-MS) to detect VOCs at ppt to ppb concentrations. To evaluate the method, we tested stability during storage, interferences (e.g., water and O3), and reproducibility for reactive and short-lived VOCs such as acetonitrile (a specific chemical tracer for biomass burning), acetone, n-pentane, isopentane, benzene, toluene, furan, acrolein, 2-butanone, 2,3-butanedione, methacrolein, 2,5- dimethylfuran, and furfural. The results demonstrate that these VOCs can be quantified reproducibly with a total uncertainty of ≤30% between the collection and analysis, and with storage times of up to 15 days. Calibration experiments performed over a dynamic range of 10–150 ng loaded on to each thermal desorption tube at different relative humidity showed excellent linearity (r2 ≥ 0.90). We utilized this method during the summer 2019 National Oceanic and Atmospheric Administration (NOAA) Fire Influence on Regional to Global Environments Experiment–Air Quality (FIREX-AQ) intensive experiment at the Boise ground site. The results of this field study demonstrate the method’s applicability for ambient VOC speciation to identify forest fire smoke in urban areas.


2011 ◽  
Vol 116 (D22) ◽  
pp. n/a-n/a ◽  
Author(s):  
David J. Miller ◽  
Kang Sun ◽  
Mark A. Zondlo ◽  
David Kanter ◽  
Oleg Dubovik ◽  
...  

2013 ◽  
Vol 94 (7) ◽  
pp. 1059-1064 ◽  
Author(s):  
Frank Dempsey

Several events were studied to examine the sources of smoke and pollutants that may affect air quality in Ontario as well as the transport mechanisms that result in effects on ground-level air quality. The selected events were strongly suspected of being influenced by forest fire smoke plumes and the evaluation of the events in this study confirmed (to a high degree of confidence) that smoke made a contribution to the measured pollutants. The main satellite-based remote-sensing product that correlated well with wildfire smoke plumes was carbon monoxide column amount.


2016 ◽  
Vol 16 (6) ◽  
pp. 197-208 ◽  
Author(s):  
Joowon Park ◽  
◽  
Ho Jung Youn ◽  
Byung Doo Lee ◽  
Choong Shik Woo ◽  
...  

2017 ◽  
Vol 68 (4) ◽  
pp. 841-846
Author(s):  
Hai-Ying Liu ◽  
Daniel Dunea ◽  
Mihaela Oprea ◽  
Tom Savu ◽  
Stefania Iordache

This paper presents the approach used to develop the information chain required to reach the objectives of the EEA Grants� RokidAIR project in two Romanian cities i.e., Targoviste and Ploiesti. It describes the PM2.5 monitoring infrastructure and architecture to the web-based GIS platform, the early warning system and the decision support system, and finally, the linking of air pollution to health effects in children. In addition, it shows the analysis performance of the designed system to process the collected time series from various data sources using the benzene concentrations monitored in Ploiesti. Moreover, this paper suggests that biomarkers, mobile technologies, and Citizens� Observatories are potential perspectives to improve data coverage by the provision of near-real-time air quality maps, and provide personal exposure and health assessment results, enabling the citizens� engagement and behavioural change. This paper also addresses new fields in nature-based solutions to improve air quality, and studies on air pollution and its mental health effects in the urban areas of Romania.


2020 ◽  
Vol 749 ◽  
pp. 141621 ◽  
Author(s):  
Juan F. Mendez-Espinosa ◽  
Nestor Y. Rojas ◽  
Jorge Vargas ◽  
Jorge E. Pachón ◽  
Luis C. Belalcazar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document