scholarly journals Evaluating the Economic Impacts of Improvements to the High-Resolution Rapid Refresh (HRRR) Numerical Weather Prediction Model

Author(s):  
David D. Turner ◽  
Harvey Cutler ◽  
Martin Shields ◽  
Rebecca Hill ◽  
Brad Hartman ◽  
...  

AbstractForecasts from numerical weather prediction (NWP) models play a critical role in many sectors of the American economy. Improvements to operational NWP model forecasts are generally assumed to provide significant economic savings through better decision making. But is this true? Since 2014, several new versions of the High-Resolution Rapid Refresh (HRRR) model were released into operation within the National Weather Service. Practically, forecasts have an economic impact only if they lead to a different action than what would be taken under an alternative information set. And in many sectors, these decisions only need to be considered during certain weather conditions. We estimate the economic impacts of improvements made to the HRRR, using 12-hour wind, precipitation, and temperature forecasts in several cases where they can have “economically meaningful” behavioral consequences. We examine three different components of the U.S. economy where such information matters: 1) better integration of wind energy resources into the electric grid, 2) increased worker output due to better precipitation forecasts that allow workers to arrive to their jobs on time, and 3) better decisions by agricultural producers in preparing for freezing conditions. These applications demonstrate some of the challenges in ascertaining the economic impacts of improved weather forecasts, including highlighting key assumptions that must be made to make the problem tractable. For these sectors, we demonstrate that there was a marked economic gain for the U.S. between HRRR versions 1 and 2, and a smaller, but still appreciable economic gain between versions 2 and 3.

2020 ◽  
Author(s):  
Dom Heinzeller ◽  
Grant Firl ◽  
Ligia Bernardet ◽  
Laurie Carson ◽  
Man Zhang ◽  
...  

<p>Improving numerical weather prediction systems depends critically on the ability to transition innovations from research to operations (R2O) and to provide feedback from operations to research (O2R). This R2O2R cycle, sometimes referred to as "crossing the valley of death", has long been identified as a major challenge for the U.S. weather enterprise.</p><p>As part of a broader effort to bridge this gap and advance U.S. weather prediction capabilities, the Developmental Testbed Center (DTC) with staff at NOAA and NCAR has developed the Common Community Physics Package (CCPP) for application in NOAA's Unified Forecasting System (UFS). The CCPP consists of a library of physical parameterizations and a framework, which interfaces the physics with atmospheric models based on metadata information and standardized interfaces. The CCPP physics library contains physical parameterizations from the current operational U.S. global, mesoscale and high-resolution models, future implementation candidates, and additional physics from NOAA, NCAR and other organizations. The range of physics options in the CCPP physics library enables the application of the UFS - as well as every other model using the CCPP - across scales, from now-casting to seasonal and from high-resolution regional to global ensembles.</p><p>While the initial development of the CCPP was centered around the FV3 (Finite-Volume Cubed-Sphere) dynamical core of the UFS, its focus has since widened. The CCPP is also used by the DTC Single Column Model to support a hierarchical testing strategy, and by the next generation NEPTUNE (Navy Environmental Prediction sysTem Utilizing the Numa corE) model of the Naval Research Laboratory. Further, and most importantly, NOAA and NCAR recently signed an agreement to jointly develop the CCPP framework as a single, standardized way to interface physics with their models of the atmosphere (and other compartments of the Earth system). This places the CCPP in the heart of several of the U.S. flagship models and opens the door for bringing innovations from a large research community into operations.</p><p>In this contribution, we will present a brief overview of the concept of the CCPP, its technical design and the requirements for parameterizations to be considered as CCPP-compliant. We will describe the integration of CCPP in the UFS and touch upon the challenges in creating a flexible modeling framework while maintaining high computational performance. We will also provide information on how to obtain, use and contribute to the CCPP, as well as on the future development of the CCPP framework and upcoming additions to the CCPP physics library.</p>


Sign in / Sign up

Export Citation Format

Share Document