scholarly journals Impact of Increasing Urban Density on Local Climate: Spatial and Temporal Variations in the Surface Energy Balance in Melbourne, Australia

2007 ◽  
Vol 46 (4) ◽  
pp. 477-493 ◽  
Author(s):  
Andrew M. Coutts ◽  
Jason Beringer ◽  
Nigel J. Tapper

Abstract Variations in urban surface characteristics are known to alter the local climate through modification of land surface processes that influence the surface energy balance and boundary layer and lead to distinct urban climates. In Melbourne, Australia, urban densities are planned to increase under a new strategic urban plan. Using the eddy covariance technique, this study aimed to determine the impact of increasing housing density on the surface energy balance and to investigate the relationship to Melbourne’s local climate. Across four sites of increasing housing density and varying land surface characteristics (three urban and one rural), it was found that the partitioning of available energy was similar at all three urban sites. Bowen ratios were consistently greater than 1 throughout the year at the urban sites (often as high as 5) and were higher than the rural site (less than 1) because of reduced evapotranspiration. The greatest difference among sites was seen in urban heat storage, which was influenced by urban canopy complexity, albedo, and thermal admittance. Resulting daily surface temperatures were therefore different among the urban sites, yet differences in above-canopy daytime air temperatures were small because of similar energy partitioning and efficient mixing. However, greater nocturnal temperatures were observed with increasing density as a result of variations in heat storage release that are in part due to urban canyon morphology. Knowledge of the surface energy balance is imperative for urban planning schemes because there is a possibility for manipulation of land surface characteristics for improved urban climates.

2020 ◽  
Vol 13 (1) ◽  
pp. 59
Author(s):  
Joshua Hrisko ◽  
Prathap Ramamurthy ◽  
David Melecio-Vázquez ◽  
Jorge E. Gonzalez

Heat storage, ΔQs, is quantified for 10 major U.S. cities using a method called the thermal variability scheme (TVS), which incorporates urban thermal mass parameters and the variability of land surface temperatures. The remotely sensed land surface temperature (LST) is retrieved from the GOES-16 satellite and is used in conjunction with high spatial resolution land cover and imperviousness classes. New York City is first used as a testing ground to compare the satellite-derived heat storage model to two other methods: a surface energy balance (SEB) residual derived from numerical weather model fluxes, and a residual calculated from ground-based eddy covariance flux tower measurements. The satellite determination of ΔQs was found to fall between the residual method predicted by both the numerical weather model and the surface flux stations. The GOES-16 LST was then downscaled to 1-km using the WRF surface temperature output, which resulted in a higher spatial representation of storage heat in cities. The subsequent model was used to predict the total heat stored across 10 major urban areas across the contiguous United States for August 2019. The analysis presents a positive correlation between population density and heat storage, where higher density cities such as New York and Chicago have a higher capacity to store heat when compared to lower density cities such as Houston or Dallas. Application of the TVS ultimately has the potential to improve closure of the urban surface energy balance.


2021 ◽  
Vol 58 (03) ◽  
pp. 274-285
Author(s):  
H. V. Parmar ◽  
N. K. Gontia

Remote sensing based various land surface and bio-physical variables like Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), surface albedo, transmittance and surface emissivity are useful for the estimation of spatio-temporal variations in evapotranspiration (ET) using Surface Energy Balance Algorithm for Land (SEBAL) method. These variables were estimated under the present study for Ozat-II canal command in Junagadh district, Gujarat, India, using Landsat-7 and Landsat-8 images of summer season of years 2014 and 2015. The derived parameters were used in SEBAL to estimate the Actual Evapotranspiration (AET) of groundnut and sesame crops. The lower values NDVI observed during initial (March) and end (May) stages of crop growth indicated low vegetation cover during these periods. With full canopy coverage of the crops, higher value of NDVI (0.90) was observed during the mid-crop growth stage. The remote sensing-based LST was lower for agricultural areas and the area near banks of the canal and Ozat River, while higher surface temperatures were observed for rural settlements, road and areas with exposed dry soil. The maximum surface temperatures in the cropland were observed as 311.0 K during March 25, 2014 and 315.8 K during May 31, 2015. The AET of summer groundnut increased from 3.75 to 7.38 mm.day-1, and then decreased to 3.99 mm.day-1 towards the end stage of crop growth. The daily AET of summer sesame ranged from 1.06 to 7.72 mm.day-1 over different crop growth stages. The seasonal AET of groundnut and sesame worked out to 358.19 mm and 346.31 mm, respectively. The estimated AET would be helpful to schedule irrigation in the large canal command.


2013 ◽  
Vol 7 (3) ◽  
pp. 961-975 ◽  
Author(s):  
A. Roy ◽  
A. Royer ◽  
B. Montpetit ◽  
P. A. Bartlett ◽  
A. Langlois

Abstract. Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, while it considers the liquid water content of the snowpack for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, arctic and subarctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.0 m2 kg–1, and a root mean square error (RMSE) of 5.1 m2 kg–1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.


Sign in / Sign up

Export Citation Format

Share Document